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Probability Theory

Two boxes with Apples and Oranges




Probability Theory

(1) Suppose we randomly pick one of the boxes

(2) Randomly select a fruit from the box

(3) Observe the type of fruit, and then put it back to where
it came from

Suppose we pick the red box 40% of the time, and the blue
box 60 % of the time

We are equally likely to select any fruit in the boxes



Probability Theory

* Two random variables
* The identity of the selected box B (B can be red or blue)
* The identity of the fruit F (F can be apple or orange)

* Define the probability
* P(B =red)=4/10, P(B= blue) =6/10
* Questions:
 What is the overall probability that the selection procedure will
pick an apple, i.e., P(F=apple)=?
* Given that we have chosen an orange, what is the probability that
the box was the blue one, i.e. .P(B=blue|F=orange)?



Two Random Variables

X: takes the values, x1, x2, ..., xm (m =5)
Y: takes the values, y1, y2, ..., yn (n =3)
ni7: the number of instances x=xi and y=yj
N: total number of instances

Joint Probability ~
pX =2, Y =y;) = %
Marginal Probability Yj y }Tj
p(X =) = %
Conditional Probability Zi
M

p(Y =y;|X =2i) = —=



Probability Theory
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The Rules of Probability

* Sum Rule p(X)=> p(X,Y)

* Product Rule p(X,Y)=p(Y|X)p(X)




Bayes’ Theorem

p(X|Y)p(Y)
p(X)

p(X) =) p(X[Y)p(Y)

Y

p(Y|X) =

posterior o« likelihood x prior



The Fruit Example

The probabilities of selecting either the red or the blue

box:
 P(B=red)=4/10
 P(B=blue)=6/10
* Further define the conditional probability
* P(F=apple| B=red)="%
* P(F=orange| B=red)=%
 P(F=apple| B=blue)=%
* P(F=orange| B=blue)=%

* Answers to the questions
P( F= apple) =P(F=apple|B=red)P(B=red) + P(F=apple|B=blue)P(B=blue)

=1/4 x4/10 + 3/4x6/10 =11/20

P(B =red |F=orange) = P(F=orange| B=red) P(B=red)/
P(F=orange)=3/4 x4/10 x 20/9 = 2/3



Expectations

* Expectations E[f]: the average value of some function
f(x) under a probability distribution p(x)

Blf) = ¥ plo)f(z) Bl7) = [ paa)ds

Eaz [f‘y] — Zp(x‘y)f(fﬂ) Conditional Expectation (discrete)
& | |

Elfl = gy 2. fl) (e nd coninas



Variances and Covariances

e Variances var[f]: a measure of how much variability
there is in f(x) around its mean value E[f(x)]

warlf] = E|(£(2) ~ Blf (0))"] = Elf(a)") - B{f (o))

e Covariance of two random variables x and vy, cov|x,y]:
the extent to which x and y vary together

coviz,y] = By [{z - Elz]} {y - Ely|}
By ylwy] - Elz[Ely

cov[x,y] = Bxy [{x-EXHy —Ely']}]
= Exylxy'| -EXE[y’]



Binomial Distribution

*A Binary variable x€{0, 1} e.g., Flipping a coin. X = 1 representing heads and
X = 0 representing tails. Define the probability of obtaining heads as:

P(X=1)=u

*The distribution of the number m of observations of x=1 (e.g. the number

of heads).
*The probability of observing m heads given N coin flips and a
parameter U is givenby:

p(m heads|N, u) =
. N m —m
Bin(m|N, u) = (m>u (1—pw)?

 The mean and variance can be easily derived as:

N
Eim] = Z mBin(m|N, u) = Nu
mﬁo
var[m| = Z ) Bin(m|N, 1) = Nu(1 — p)

m=0



Example

*Histogram plot of the Binomial distribution as a function of m for N=10
and u =0.25.
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Multinomial Variables

*Consider a random variable that can take on one of K possible mutually
exclusive states (e.g. roll of a dice).

* We will use so-called 1-of-K encoding scheme.

If a random variable can take on K=6 states, and a particular
observation of the variable corresponds to the state x;=1, then x will be
resented as:

1-of-K coding scheme: x =(0,0,1,0,0, O)T

*If we denote the probability of x,=1 by the parameter u,, then the
distribution over x is defined as:

p(X|N) — H Mzk Vk :pur >0 and Z“’“ —



Multinomial Variables

*Multinomial distribution can be viewed as a generalization of Bernoulli
distribution to more than two outcomes.

p(x|p) = Hu

* It is easy to see that the distribution is normalized:

K
> opEp) =) =1
X k=1

and
E[x|p] = ZPXIMX— (115 i) = p



Maximum Likelihood Estimation

* Suppose we observed a dataset D = {Xl, ooy XN}

* We can construct the likelihood function, which is a function of L.

*Note that the likelihood function depends on the N data points only
though the following K quantities:

mip — ank, k = 1, ...,K.

n
which represents the number of observations of x,=1.

* These are called the sufficient statistics for this distribution.



Maximum Likelihood Estimation

plpw) =] 1] i = 11w =] w™
n=1 k=1 k=1 k=1

*To find a maximum likelihood solution for U, we need to maximize the
log-likelihood taking into account the constraint that >, px =1

e Forming the Lagrangian:

K K
kalnuk+)\ <Zuk1)
k=1 k=1

m
e = =M/ A M%L:Wk A=—-N

which is the fraction of observations for which x,=1.



Gaussian Univariate Distribution

* In the case of a single variable x, the Gaussian distribution takes form:

A

N(z|p,0?) 1 1
N (z|p,0%) = e exp{— (r—u)Q}

202

A (270

which is governed by two parameters:

- U (mean)

+ — - gl2(variance)

The Gaussian distribution satisfies:
N (2|, o) > 0

/ N (z|u,0°) doz =1

— OO



Multivariate Gaussian Distribution

* For a D-dimensional vector x, the Gaussian distribution takes form:

N, B) = e {3 - )T - )|

332‘
which is governed by two parameters:

@ — M is a D-dimensional meanvector.

- Xisa D by D covariance matrix.

and | = | denotes the determinant of .

* Note that the covariance matrix is a symmetric positive definite
matrix.



Maximum Likelihood Estimation

* Suppose we observed i.i.d data X = {Xl, ey XN}.

* We can construct the log-likelihood function, which is a function of
U and§:

N
ND N 1 _
Inp(X|p, X) = ———In(27) — - In[%] - 7 > (0 — 1) =7 (%0 — )
n=1

*Note that the likelihood function depends on the N data points only
though the following sums:

Sufficient Statistics

N N
E X, E Xp X}



Maximum Likelihood Estimation

*To find a maximum likelihood estimate of the mean, we set the
derivative of the log-likelihood function to zero:

9 N
> Inp(X|p, %) = > M (xp—p) =0
H n=1
and solve to obtain
| N
Kt — N nz::lxn

 Similarly, we can find the ML estimate of X :

N
1
ML = N z — pin) (X0 — o)



Maximum Likelihood Estimation

* Evaluating the expectation of the ML estimates under the true

distribution, we obtain: Unbiased estimate
e
E[“’ML] - M
N —1
E[¥m] = N 2w Biased estimate

* Note that the maximum likelihood estimate of % is biased.

* We can correct the bias by defining a different estimator:
_ 1 XN
2= N _1 Z(Xn — i) (Xn — M)

n=1



Mixture of Gaussians

*When modeling real-world data, Gaussian assumption may not be
appropriate.

 Consider the following example: Old Faithful Dataset

100 ; : ; - 100
30 | 30 |
60 | 60 |
40 L 2 A 40 s s 2 &
1 2 3 4 5 6 1 2 3 4 5
Single Gaussian Mixture of two

Gaussians



Mixture of Gaussians

*We can combine simple models into a complex model by defining a
superposition of K Gaussian densities of the form:

K
p(x) =Y TN Xy, k) pla)y

—1 \ ' )
Component

Mixing coefficient

K
Vk :m. >0 E T = 1
K=3
k=1
*Note that each Gaussian component has its own mean u, and

covariance ,. The parameters 74 are called mixing
coefficients.

*Mote generally, mixture models can comprise linear combinations of
other distributions.



Mixture of Gaussians

e lllustration of a mixture of 3 Gaussians in a 2-dimensional space:

057

(a)Contours of constant density of each of the mixture components,
along with the mixing coefficients

K

(b) Contours of marginal probability density p(x) = Z TN (x|, Xk
k=1

(c) A surface plot of the distribution p(x).



Gradient Descent

* Gradient descent is a way to minimize an objective
function /(¢)

« /(9): objective function

- ¢eR?d: model’s parameters

- 7z:learning rate, which determines the size of the steps we
take to reach a (local) minimum.

Vol (6) 1(8)

Update equation

6 =60-n=*VsJ(0)

7 (local) minimum

8*
Slides from St_Hakky
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