Recurrent Neural Networks

Jian Tang

tangjianpku@gmail.com

HEC MONTREAL

RNN: Recurrent neural networks

* Neural networks for sequence modeling
 Summarize a sequence with fix-sized vector through recursively updating

llrlfiiltl

h,=F,(h,_,x,)

h, = Gt(xta Lt—1yLt—2y 4y L2, xl)

Recurrent Neural Networks

e Can produce an output at each time step: unfolding the graph tell us
how to back-prop through time

h, =tanh(Wh,_, +Ux,)

Recurrent Neural Networks

* Produce a single output at the end of sequence

h, =tanh(Wh,_, +Ux,)

Language Modeling

A language model computes a probability for a sequence
of words: P(ws,...,wy)

e Useful for machine translation

* Word ordering:
p(the cat is small) > p(small the is cat)

* Word choice:
p(walking home after school) > p(walking house after
school)

RNN for Language Modeling

* Estimate the probability of a sequence zi,...,2 1,2, 2401, .., 27

T
P(x) = P(z1,...27) = HP(xt|xt_1,xt_2, ... 21)

t=1
At a single time step: he = o (W(h’”ht_l + W(hf"’>x[t])
J; = softmax (W(S)ht>

p($t+1 = Uy | xt,...,xl) — :&t,j

RNN for Language Modeling

Main idea: we use the same set of W weights at all time
steps!

Everything else is the same: n, = o (Wh, 1 + Wy,
U = softmax (W(S)ht>
p(ZIZH_l = Uj | xtw"axl) — gtaj

ho € RP» is some initialization vector for the hidden layer
at time step O

Z[¢] is the column vector of L at index [t] at time step t
W(hh) c RDhXDh W(hx) c RDh xXd W(S) c R|V|XDh

RNN for Language Modeling

RS RIVI s a probability distribution over the vocabulary

Same cross entropy loss function but predicting words
instead of classes

\4
JN0) = = i jlog i,
j=1

RNN for Language Modeling

Evaluation could just be negative of average log
probability over dataset of size (number of words) T:

T |V

1
J = R S: S:yt,;,— log 9z

t=1 j=1

But more common: Perplexity: 2

Lower is better!

Training RNN is very Hard

e Multiply the same matrix at each time step during forward prop

<

t-1 Vi

~
+
[BEY

he

—_—

Xt-1 r Xt Xis1 r

o000
= s
eo00|—
=
o000

e |deallyinputs from many time steps ago can modify outputy

e Take % for an example RNN with 2 time steps! Insightful!

Gradient Vanishing/Exploding

Multiply the same matrix at each time step during backprop

@ QlQQ

Details

e Similar but simpler RNN formulation:

ht = Wf(ht_l) + W(hx)ib'[t]
g = WO f(hy)

e Total error is the sum of each error at time steps t

OF _ N~ O
oW £~ oW

t=1
e Hardcore chain rule application'

8Et Z 8Et (’9yt 8ht 8hk

Details

e Similar to backprop but less efficient formulation

e Useful for analysis we’ll Iook at:

(9Et Z (‘?Et 8yt 8ht 8hk

e Remember: he = Wf(hi—1) +Whogg,
e More chain rule, remember:
O _ f Oh;
Ohp j:kq—l Ohj_1
* Each partial is a Jacobian: "o Of1
d_f_[af 8f]_ v O
—=|5= " a|=] L
R (VPR
| 0xq ox,, |

Details

* From previousslide: % — aihj he-s o h; o
S S I ® |®
® O
* Remember: h, = Wf(h_1)+ Wy ® °
e To computeJacobian, derive each element of matrix: FT— J.m
j—1n
Oh L Oh t
t J T 1 /
By = d h;_
O on = LI Wdingls ()

* Where: diag(z) = Check at home

Zn—1 the diag matrix
\ z) formulation
n

that you understand

Details

e Analyzing the norms of the Jacobians, yields:
Oh;
6hj_1
e Where we defined ‘s as upper bounds of the norms

< W ||| diag[f'(hj—0]Il < Bw Bn

e The gradientis a product of Jacobian matrices, each associated
with a step in the forward computation.

ohy
Ohy,

— || < (BwpBn) "

e This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. = Vanishing or exploding gradient

Long-short Term Memory (LSTM)

* From multiplication to summation

* |Inputgate (current cell matters) @« =0 (W(i)xt + U(i)ht—l)

* Forget (gate O, forget past) ft=0 (W(f):vt + U(f>ht—1)

* Output (how much cell is exposed) ot =0 (W(O)ﬂft + U(O)ht—l)

* New memory cell ¢; = tanh (W(C)wt + U(C)ht—l)
Final memory cell: ¢t = froci—1 41506

Final hidden state: hy = oy o tanh(cy)

Gated Recurrent Unit (GRU, Cho et al. 2014)

Update gate =0 (W(z)xt + U(z)ht_1>
Reset gate re=o (W@“)xt + U<7“>ht_1)

New memory content: h: = tanh (Wxy + 70 Uhy_)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

Final memory at time step combines current and
previous time steps: he = 2zt 0 hy—1 + (1 — 2¢) o hy

Gated Recurrent Unit (GRU, Cho et al. 2014)

Zt — O (W(z)fb‘t + U(z)ht_l)
Tt — O (W(T)CE‘t + U(T)ht_l)

Final memory

h; = tanh (Waxy+ri0oUhy_q)

Memory (reset) ht =20hi1+(1—2)0Mhy

Update gate

Reset gate

Input:

Gated Recurrent Unit (GRU, Cho et al. 2014)

If reset is close to O, =0 (W(z)fﬂt + U(z)ht—l)
ignore previous hidden state re=o (Wz, + UOh,)
— Allows model to drop foe = tanh (W, + o Uhy_y)

information that is irrelevant .
, ht =ziohi—1+ (1 — 2z¢) o hy
in the future

Update gate z controls how much of past state should
matter now.

* Ifzcloseto 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset
gates very active

Gated Recurrent Unit (GRU, Cho et al. 2014)

Units with long term =0 (W(z)xt + U(z)ht—1>
dependencies have active re=o (W““):z:t + U<"")ht_1)
update gates z foe = tanh (Wzy + 14 0 Uhy_1)

Illustration: ‘Y he =z 0hi_1 + (1 —z)0hy
Z

ey

=)
!
X

Deep Bidirectional RNN (Irsoy and Cardie)

g

P i o020 o0
f(W h +V hii+b)

e(z) PR UL ORI ()
f(W h +V hwm+b)

—(L) «(L)

= g(U[ht ;ht]+C)

X o o o o
Each memory layer passes an intermediate sequential
representation to the next.

Optimization for Long-term Dependencies

* Avoiding gradient exploding
* Clipping Gradients

if ||g|| > v

gu
g —

gl

Optimization for Long-term Dependencies

* Avoiding gradient vanishing
e With LSTM or GRU
* Or regularize or constrain the parameters so as to encourage “information

flow”
0E Oh OE
* Make - close to —. Pascanu et al. (2013a) propose the

following regularizer:

0E 0dh,

Z "ahtaht |

? gl

- 1)

Applications: Language Modeling

target word "is" "the" "problem"

output likelihood

hidden state

input embedding

input word "Whatll llisll "thell

Applications: Sentence Classification

Aggregate —{ Softmax Label

article

Applications: Sequence Tagging

B-ORG O B-MISC O

e N A A

.

2°S ' Z Z/\
s

EU rejects German call

Figure: Bidirectional LSTM-CRF

Applications: Sequential Recommendation

Sessionl F;,; h: Fu Fu

Session2 Fzifazzfza Input

Session3 F:,:F:,:Fukuh.sku —

Sessiond -
Session5 -

Output

Figure: User sequential behaviors

References

e Chapter 10, Deep Learning Book

