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Classification

* Assign an input real-valued vector x into K discrete classes {Cy }x=1 .k
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Linear Classification

* Goal: Assign an input real-valued vector x into K discrete classes
{Ci}i=1,.x

* The input space is divided into different decision regions whose
boundaries are called decision boundaries or decision surfaces.

* Linear classification: the model is linear w.r.t. the parameters

y(x, w) = x' w4+ wp. y(x,w) = f(x''w +wp).

\ /

fixed nonlinear function:
adaptive parameters

activation function

* For classification, we need to predict discrete classes, or posterior
probabilities that lie in the range of (0,1), and therefore a nonlinear
function f is used.



Linear Classification

y(x,w) = f(x'w 4+ wp).

* The decision boundary : y(x,w) = const, i.e., x' w -+ wg = const,
* The decision boundary are linear functions of x
e Even if fis a nonlinear function

* Note: these models are not linear w.r.t. the parameters any more
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Notation

* Binary Classification: target t € {0,1}, t=1 represents the positive
class and t=0 represents the negative class

* Multi-class classification: one-hot encoding

e E.g., if there are K=5 classes, an input belonging to the second class
can be encoded as

t=1(0,1,0,0,0)".

* Which can be interpreted as the probabilities belonging to each class



Three Approaches for Classification

* Construct a discriminant function that directly maps an input to a
class (e.g., support vector machine)

* Model the conditional distribution p(Ci|x),

» Two alternative approaches

 Discriminative model: directly model the conditional probability »(C:|x), (e.g.,
logistic regression)

* Generative model: model the joint probability p(x, Ci ). The conditional
probability p(Cx|x), can be calculated as:

~ p(x|Cr)p(Cy)
P(Cilx) = p(x)

(e.g. Naive Bayes).



Outline: Linear Classification

* Discriminant Function
e Generative Models
e Discriminative Models



Discriminant Functions

* Consider y(x) =x’w + .

* Assign x to C1 if y(x) > 0, and class C2 otherwise

* Decision boundary: y(x) = 0. y>0 @
=0

* If two points x4 and xg lie on the same y<0 g

decision surface: y(x4) =y(xp) =0,

w' (x4 —xp) =0.
* w is orthogonal to the decision surface

e If xis on the decision surface

WTX wo

H H o HWH ' Wn determines the location of decision surface




Multiple Classes

¢ HOW tO extend K>2 CIaSSES One-versus-the-rest
* One option is to use K-1 classifiers, each of which

solves a two-class problem:
e Separates class ¢, from the rest of the classes

* There are regions in the input space that are
ambiguously classified




Multiple Classes

* An alternative solution is to use K(K-1)/2 binary One-versus-one

discriminant functions
e Each function discriminates two classes

e Similar problem of ambiguous regions




Simple Solution

e Use K discriminant functions of the form:
yp(X) = X' Wy, + wyo, Where k =1, ..., K.
* Assign x to Gy, if yx(x) > y;(x) Vj # k (pick the max)

e Can guarantee to give decision boundaries that are singly connected
and convex

* For any two points that lie inside region R, R,
Yk(X4) > y;(xa) and yx(xp) > y;(x) R,
implies that
yrloxa + (1 —a)xp) > yilaxa+ (1 —a)xp)

ﬂXB

Ry
X A @ i.

due to linearity of the discriminant functions



The Perceptron Algorithm

* Another example of a linear discriminant function
* Consider the following generalized linear model:

y(x) = f(w ¢(x))

* Where nonlinear function f(.) is given by a step function

ORI

-1 a<0

* and x is transformed using a fixed nonlinear function ¢(x)
* Hence we have a two-class model



The Perceptron Algorithm

e A natural choice of error function would be the total number of
misclassified examples (but hard to optimize, discontinuous)

 Consider an alternative error function:

* First, note that
e Patterns x,, in class ¢; should satisfy that:
w!d(x,) > 0
* Patterns x,, in class ¢, should satisfy that:
w!o(x,) <0

* Using the target coding t € {—1,1}, we see that we would like all
patterns to satisfy:

WTgb(xn)tn > ()



Error Function

* Using the target coding t € {—1,1}, we see that we would like all

patterns to satisfy:
wl (% )tn > 0

* The error function is therefore given by :
Ep(w) ==Y w'¢(xn)tn
neM
\ M denotes all misclassified examples.
* The error function is linear w.r.t. w in regions of w space where the
example is misclassified and O in regions where it is correctly
classified.

* The error function is piece-wise linear



Error Function

* We can use stochastic gradient descent. Given a misclassified
example, the change of weight is:

t+1

Wit =w' =7 Ep(w) = w' +né(xn)tn,

n is the learning rate

* Since the perceptron function y(x) = f(w"¢(x)) is unchanged if we
multiple w by a constant, we set | |w]| |=1

* The contribution to the error function from the misclassified example
will be reduced

_W(Ht)Tqb(Xn)tn = _W(t)T¢(Xn)tn_(¢(Xn)tn)T(¢)(Xn)tn>
< —wBT(x,)t, \

Always positive



Error Function

 Note that the contribution to the error function from the
misclassified example will be reduced:

_W(t+t)T¢(Xn)tn — _W(t)T¢(Xn)tn - (¢(Xn)tn)T(¢)(Xn)tn)
< _W(t)TCb(Xn)tn
Always positive

* However, the change in w may cause some previously correctly
classified examples to be misclassified. No convergence guarantees in
general.



Outline: Linear Classification

* Discriminant Function
e Generative Models
e Discriminative Models



Probabilistic Generative Models

* Model class conditional probability p(x|C;) and class prior p(Cy)
separately (e.g., Naive Bayes)

* Take the binary classification as an example, the posterior probability
of class C; p(x|C1)p(C1)

PC) = S iep(@) + p(xICa)p(Ca)
- = o(a)
Lt exp (o) \ Logistic sigmoid
function
pxCOp(C) . pClx)

p(xCo)p(C2) ~ T p(Cilx)’

* ais known as the logit function, which represents the log or the
ration of probabilities of two classes, as known as the log-odds.

a = ln



Sigmoid Function

* The posterior probability of class C;:

_ p(x|C1)p(C1) |
PR = SRem(en + pxICInC)
1
" 1+exp(—a)

— O'(CL)’ 0.5

N

Sigmoid function

0

5 0 5

* The term sigmoid maps the real space to (0,1), and satisfies:

o(~a) =1 - o(a). %0(@) — o(a)(1 - o(a)).



Softmax Function

* For K>2 classes, we generalize the sigmoid function to the softmax:

__p[Ce)p(Cr) _ _explar)
p(Ck|x) = S pxC)P(C S, explay)” k = In|p(x|Cy )p(Ck)].

e Softmax function represents a smoothed version of max function

if ar > a;, Vj # k, then p(Ci|x) =~ 1, p(C;|x) =~ 0.



Example of Continuous Inputs

* Assuming that the input vectors for reach class are from a Gaussian
distribution, and all classes share the same covariance matrix:

1 1 T—1
pxI0K) = s (5 k- ) T2 - ).

* For binary classification, the posterior is the logistic function:

p(Ci|x) = O'(WTX + wp),

W = 2_l(lJJl — Uy), )
_ 1 Twv—1 1 Tw—1 pL1
wo = —gH1 A py Gy X uz+lnp(c2)-

* The quadratic terms in x is cancelled (the same covariance matrix)

* This leads to a linear function of x in the argument of logistic sigmoid.
Hence the decision boundaries are linear in input space.



Example of Two Gaussian Models

Class-conditional densities for The corresponding posterior

two classes probability p(C,|x), given by the
sigmoid function of a linear
function of x.



Case of K>2 Classes

* For the case of K classes, the posterior is a softmax function:

 p(x|Ck)p(Cr)  exp(ax)
PG = S e (G — T, explay)’

T
ap = ka+wko,

e Similar to binary classification, we define:

Wi = E_lll'kzv

1

Wgo = _iﬂ'gz_l“k + Inp(Cg).

* Again, the decision boundaries are linear in input space.

* If we allow each class-conditional density to have its own covariance,
we will obtain quadratic function of x (quadratic discriminant).



Quadratic Discriminant

* The decision boundary is linear when the covariance
matrices are the same and quadratic when they are not.
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Maximum Likelihood Solution

* Take the binary classification as an example, each having a Gaussian
class-conditional density with the same covariance matrix

 We observe a dataset: {x.,t.}, n=1,.,N.
* tn=1 denotes class C1, tn=0 denotes class C2
* Andalso »(Ci) ==, p(Cs) =1—m.

 The likelihood function:

(6, Xl g, D) — [ N s, zﬂt” (0= TN Gl )

" / \ Data points

Data points
from class C;. from class C,.

e Maximize the likelihood function



Maximum Likelihood Solution

1—¢t,

N tn
P& X s ) = [T oG, D) |1 =m0 G )

* Maximize w.r.t. T. The terms of the log-likelihood functions depends

on 1t: Z [tp InT + (1 —¢,) In(1 — 7)] + const.
Differentiating, we have o 1 f:t N
B — " N1 + No .

* Maximize w.r.t. i;: the terms depending on pi4:

Ztn InN(x,|p,2) = —= Zt — pu)T2 Y (x,, — py) + const.

Differentiating, we get: And similarly:

N



Maximum Likelihood Solution

N

ple Xl o1 %) = [T [ A ) ’ [EREIC

n=1

1—t,

* Maximize w.r.t. X:
——Zt 1n|23|——2t = p1) 7 (% — o)
5 D= ) W[ = 5 370 )00 — ) T2 o — o)

_ N In|%| - ETr(Z_IS).
2 2
* Here: |
ere *Using standard results for a Gaussian
distribution we have:
s- Mg | Nog
N N > =8S.
S, = L T
1= ﬁl Z (Xn = 1) (X — 1) -Maximum likelihood solution represents a

nec . weighted average of the covariance matrices
Z (Xn = H2)(Xn = H12)" . associated with each of the two classes.

n€C2



Outline: Linear Classification

* Discriminant Function
e Generative Models
e Discriminative Models



Logistic Regression

* For binary classification, the posterior probability of class C; can be
written as sigmoid function

_ 1 _ T
p(cl|x) — 1 —I—exp(—wa) _O(W X)7

* and p(Clx) =1 - p(C:x), and we omit the bias term for clarity.

* This model is known as logistic regression (although this is a
model for classification rather than regression).

1

Note that for generative models, we would
first determine the class conditional
densities and class-specific priors, and
then use Bayes’ rule to obtain the 0.5
posterior probabilities.

logistic sigmoid function

Here we model p(Ck|x) directly. .



ML for Logistic Regression

« We observed a training dataset txu:tn}, n=1,...N; t, € 10,1}
« Maximize the probability of getting the label right, so the likelihood
function takes form: N

ptIX,w) =] [yﬁ”(l — yn)l_t”], yn = o(W'xy).

n=1

 Taking the negative log of the likelihood, we can define the cross-
entropy error function (that we want to m|n|m|ze)

N

E(w)=—Inp(t|X,w) = Z [t Iny, + (1 —t,)In(1 —yy, ] ZE
» Differentiating and usmg the chain rule:

d _ YUn —1n d . d

aEn — yn(l — yn)’ dwyn — yn(l - yn)XTw aa(@ =o(a)(1 —o(a)).
d dE,, dy,

- Lin — - — \YUn — tn n-

dw dy, dw (y )X

» Note that the factor involving the derivative of the logistic function cancelled.



ML for Logistic Regression

 We therefore obtain:

VE(w) = Z(yg — tn)Xn.
=N

prediction target

* This takes exactly the same form as the gradient of the sum-of- squares
error function for the linear regression model.

* Unlike in linear regression, there is no closed form solution, due to
nonlinearity of the logistic sigmoid function.

« The error function is convex and can be optimized using standard gradient-
based (or more advanced) optimization techniques.



Multiclass Logistic Regression

* For multiclass case, the posterior probability is represented by a softmax
transformation of linear functions of input variables:
* exp(w; x)

PO = () = g

J

jexp(w
* Maximum likelihood is used to determine the parameters of this discriminative
model directly.

* Suppose we observe a data set {x,,t.}, n=1,..,N, where we use 1-of-K encoding
for the target vector ¢,, .

* So if Xy, belongs to class Cy, then tis a binary vector of length K containing a
single 1 for element k (the correct class) and 0 elsewhere.

* For example, K=5, an input belonging to class 2 would be given a target vector:
t =(0,1,0,0,0)"



Multiclass Logistic Regression

 We can write down the likelihood function:

N K
p(T|X,W1, 7WK) = H [H p(Ck|Xn)tnk
\ n=1 \k:l ], ne1 | k=1
e

N x K binary matrix of Only one term corresponding
target variables. to correct class contributes.

exp(ngn)

* Where Yk = P(Crlxn) = > exp(wlx,)’

« Taking the negative logarithm gives the cross-entropy entropy function for
multi-class classification problem:

E(wy,...,wg)=—Inp(T|X,wy,...,Wg) = — Z [Ztnk lnynk].
- Take the gradient: e

N
VE le . ynj ng

n=1



Special Case of Softmax

* If we consider a softmax function for two classes

B exp(ay) _ 1
O = o oxpten] ~ T el

=o(a1 — a2).

« So the logistic sigmoid is just a special case of the softmax function that
avoids using redundant parameters:

« Adding the same constant to both a, and a, has no effect.

* The over-parameterization of the softmax is because probabilities must add up to one.



Summary

« Generative approach: Determine the ¢ Discriminative approach: Train all of

class conditional densities and class- the model parameters to maximize
specific priors, and then use Bayes’ the probability of getting the labels
rule to obtain the posterior right.

probabilities. * Model p(Cxlx) directly.

— Different models can be trained
separately on different machines.

— It is easy to add a new class without
retraining all the other classes.

p(x|Cx)p(Ck)
p(x)

p(C[x) =
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