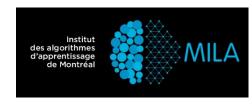
Feedforward Neural Networks

Jian Tang

tangjianpku@gmail.com



The task

• The goal is to learn a mapping function $y = f(x; \theta)$ (e.g., for classification $f: \mathbb{R}^d \to \mathbb{C}$).

Example: image classification

Traditional Machine Learning

Hand-craftedFeature Extractor

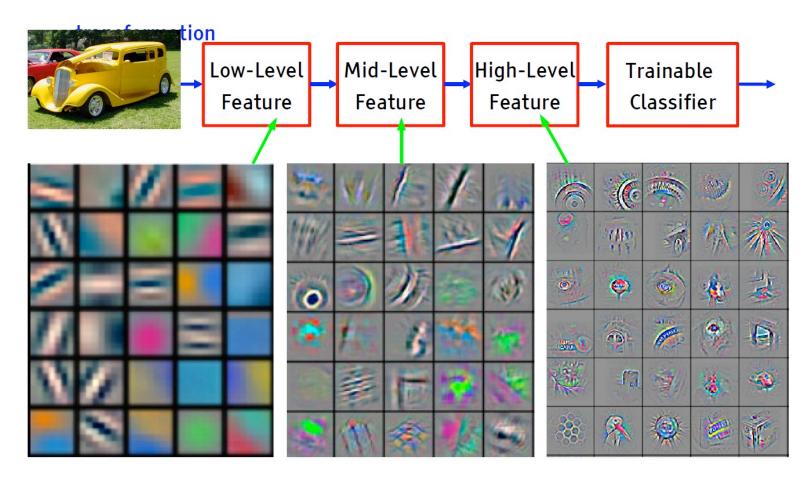
Simple Trainable Classifier e.g., SVM, LR

Deep Learning= End-to-end Learning/Feature Learning

TrainableFeature Extractor

Trainable Classifier e.g., SVM, LR

Deep Learning= Learning Hierarchical representations



Hierarchical representations with increasing level of abstraction

- Image recognition
 - Pixel -> edge -> texton-> motif -> part -> object
- Speech
 - Sample -> spectral band -> sound -> phone -> word...
- Text
 - Character -> word -> phrase->clause-> sentence
 - ->paragraph-> document

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Neuron: Nonlinear Functions

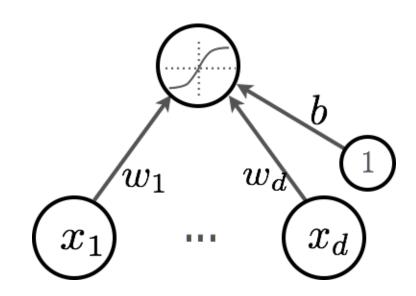
Input: linear combination:

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = \mathbf{w}^T \mathbf{x} + b$$

• Output: nonlinear transformation:

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(\mathbf{w}^T \mathbf{x} + b)$$

- w: are the weights (parameters)
- b is the bias term
- g(.) is called the activation function



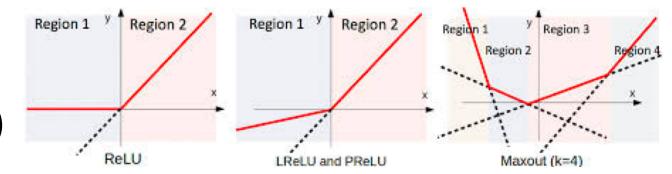
Activation functions/Hidden Units

- Sigmoid function
 - g(x) = 1/(1+exp(-x))
 - Map the input to (0,1)
- Tanh function
 - g(x) = (1-exp(-2x))/(1+exp(-2x))
 - Map the input to (-1,1)
- Rectified linear (ReLU) function
 - g(x) = max(0,x)
 - No upper bounded



Other activation functions

- Leaky ReLU (Maas et al. 2013)
 - $g(x) = \max(0, x) + \alpha \min(0, x)$
 - Fix α to a small value, e.g., 0.01
- Parametric ReLU (He et al. 2015)
 - Treat α as a parameter to learn



- Maxout units (Goodfellow et al. ,2013)
 - Generalize rectified linear units
 - Divide the output units into groups of k values, and output the maximum value in each group
 - Provides a way of learning a piecewise linear function that responds to multiple directions in the input x space.

One Hidden layer Neural Networks

Input of the hidden layer:

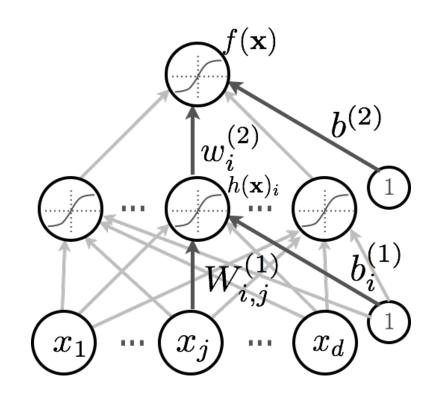
$$a(\mathbf{x}) = \mathbf{W}^T \mathbf{x} + \mathbf{b}$$

Nonlinear transformation:

$$h(\mathbf{x}) = g_1(a(\mathbf{x}))$$

Output layer

$$f(\mathbf{x}) = o(h(\mathbf{x}))$$



Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Linear Units for Gaussian Output Distributions

- Given the hidden units ${m h}$, a layer of linear output units produces ${m \hat y} = {m W}^T {m h} + {m b}$
- Linear output layers are often used to produce the mean of a conditional Gaussian distribution

$$p(y|x) = N(y|\hat{y}, I)$$

Sigmoid Units for Bernoulli Output Distributions

- Bernoulli output distributions: binary classification
- The goal is to define p(y = 1|x), which can be defined as follows:

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

Softmax Units for Multinomial Output Distributions

- Bernoulli output distributions: multi-class classification
- First, define a linear layer to predict the unnormalized log probabilities of softmax:

$$z = W^T h + b$$

• where $z_i = \log p(y = i | x)$. Formally, the softmax function is given by

•

$$p(y = i | \mathbf{x}) = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Multilayer Neural Networks

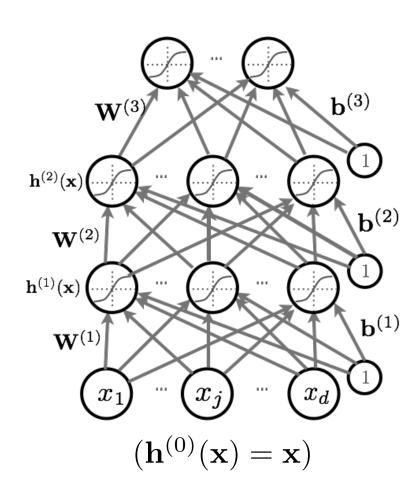
- Neural network with multiple hidden layers
- The output of previous layer as the input of next layer: (k=1..., L)

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

Final output layer

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$



Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost function
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Maximum Likelihood

• Most of the time, neural networks are used to define a distribution $p(y^t|x^t;\theta)$. Therefore, the overall objective is defined as:

$$argmax_{\theta} \frac{1}{T} \sum_{t} \log p(y^{t} | \boldsymbol{x}^{t}; \boldsymbol{\theta}) + \lambda \Omega(\boldsymbol{\theta})$$

Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Universal Approximation

- Universal Approximation Theorem (Hornik, 1991)
 - "a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrary well, given enough hidden units"
- However, we may not be able to find the right parameters
 - The layer may be infeasibly large
 - Optimizing neural networks is difficult ...

Deeper Networks are preferred

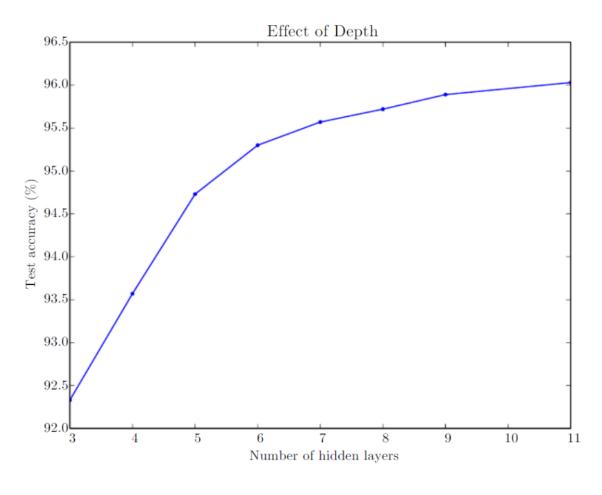


Figure: Empirical results showing that deeper networks generalize better

Deeper Networks are preferred

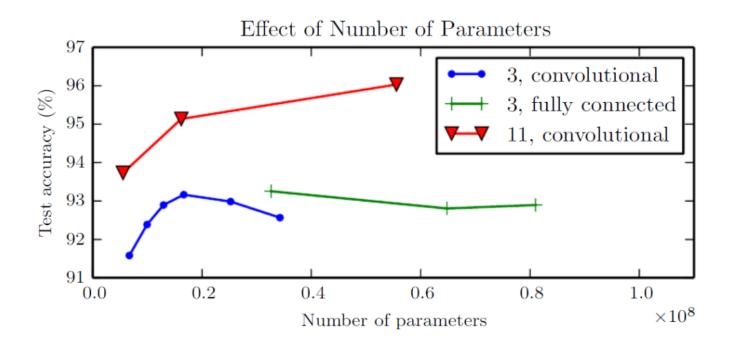


Figure: Deeper models tend to perform better with the same number of parameter

Deeper networks are preferred

- There exist families of functions which can be approximated efficiently with deep networks but require a much larger model for shallow networks
- Statistical reasons
 - a deep models encodes a very general belief that the function we want to learn should involve composition of several simple functions
 - Or we believe the learning problem consists of discovering different levels of variations, with the high-level ones defined on the low-level (simple) ones (e.g., Pixel -> edge -> texton-> motif -> part -> object).

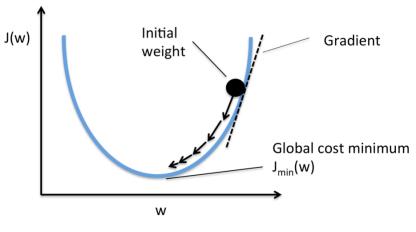
Outline

- Network Components
 - Neurons (Hidden Units)
 - Output units
 - Cost functions
- Architecture design
 - Capacity of neural networks
- Training
 - Backpropagation with stochastic gradient descent

Backpropagation with Stochastic Gradient Descent

- Gradient descent:
 - Update the parameters in the direction of gradients
 - Need to iterate over all the examples for every update
- Stochastic gradient descent
 - Perform updates after seeing each example
 - Initialize: $\boldsymbol{\theta} \equiv \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)}\}$
 - For t=1:T
 - for each training example $(\mathbf{x}^{(t)}, y^{(t)})$

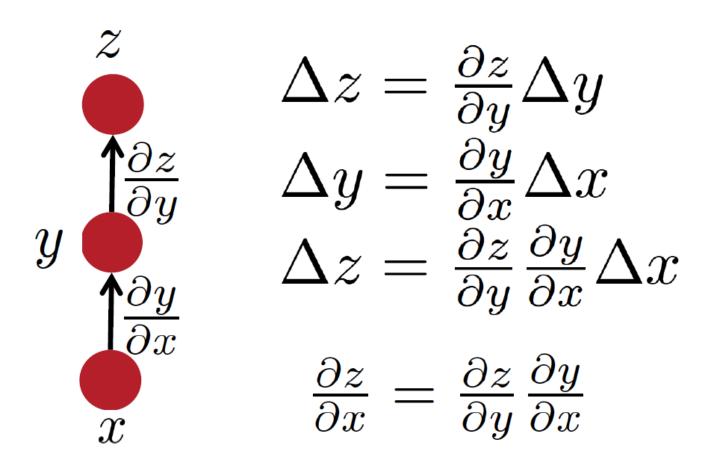
$$\Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \Delta$$



Training epoch

Iteration of all examples

BackPropagation:Simple Chain Rule



Forward Propagation

```
Require: Network depth, l
Require: W^{(i)}, i \in \{1, \ldots, l\}, the weight matrices of the model
Require: b^{(i)}, i \in \{1, \dots, l\}, the bias parameters of the model
Require: x, the input to process
Require: y, the target output
   h^{(0)} = x
   for k = 1, \ldots, l do
     a^{(k)} = b^{(k)} + W^{(k)}h^{(k-1)}
     \boldsymbol{h}^{(k)} = f(\boldsymbol{a}^{(k)})
   end for
   \hat{\boldsymbol{y}} = \boldsymbol{h}^{(l)}
   J = L(\hat{\boldsymbol{y}}, \boldsymbol{y}) + \lambda \Omega(\theta)
```

Backward Propagation

After the forward computation, compute the gradient on the output layer:

$$\boldsymbol{g} \leftarrow \nabla_{\hat{\boldsymbol{y}}} J = \nabla_{\hat{\boldsymbol{y}}} L(\hat{\boldsymbol{y}}, y)$$

for
$$k = l, l - 1, ..., 1$$
 do

Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise):

$$g \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J = g \odot f'(\boldsymbol{a}^{(k)})$$

Compute gradients on weights and biases (including the regularization term, where needed):

$$\nabla_{\boldsymbol{b}^{(k)}} J = \boldsymbol{g} + \lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\theta)$$

$$\nabla_{\mathbf{W}^{(k)}} J = \mathbf{g} \ \mathbf{h}^{(k-1)\top} + \lambda \nabla_{\mathbf{W}^{(k)}} \Omega(\theta)$$

Propagate the gradients w.r.t. the next lower-level hidden layer's activations:

$$\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{h}^{(k-1)}} J = \boldsymbol{W}^{(k)\top} \ \boldsymbol{g}$$

end for

References

• Deep Learning book, chap 6.