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The task

* The goal is to learn a mapping function y = f(x; @) (e.g., for
classification f: R¢ — C).
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Example: image classification



Traditional Machine Learning

Hand-crafted Simple Trainable Classifier
Feature Extractor j> e.g., SVM, LR

Domain experts



Deep Learning= End-to-end Learning/Feature
Learning

Trainable Trainable Classifier
Feature Extractor j> e.g., SVM, LR

Domain expert



Deep Learning=

Learning Hierarchical representations
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(Figure from LeCun)



Hierarchical representations with increasing
level of abstraction

* Image recognition
* Pixel -> edge -> texton-> motif -> part -> object

* Speech

e Sample -> spectral band -> sound -> phone -> word...

* Text
e Character -> word -> phrase->clause-> sentence

->paragraph-> document

(slides from LeCun)



Outline

* Network Components
e Neurons (Hidden Units)
* Output units
e Cost functions

* Architecture design
e Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Neuron: Nonlinear Functions

* Input: linear combination:

Cl(.X') =b +2Wixi =wlix+b
i
e Qutput: nonlinear transformation:

h(x) = g(a(x)) = gw'x + b)

e w: are the weights (parameters)
e b is the bias term
* g(.) is called the activation function



Activation functions/Hidden Units

° Slgm0|d functlon 5_S|gm°|d .................. oy
. g(x) = 1/(1+exp(_x)) al :::::E ................
* Map the input to (0,1) — softplus : f

* Tanh function
* g(x) = (1-exp(-2x))/(1+exp(-2x))
 Map the input to (-1,1)

e Rectified linear (ReLU) function
e g(x) =max(0,x)
* No upper bounded




Other activation functions

e Leaky RelLU (Maas et al. 2013)
¢ g(x) = max(0,x) + amin(0, x)
* Fix a to a small value, e.g., 0.01

* Parametric ReLU (He et al. 2015)

* Treat « as a parameter to learn - e ek P ———

* Maxout units (Goodfellow et al. ,2013)

* Generalize rectified linear units

* Divide the output units into groups of k values, and output the maximum
value in each group

* Provides a way of learning a piecewise linear function that responds to
multiple directions in the input x space.
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One Hidden layer Neural Networks

* Input of the hidden layer:
a(x) =WTx+b
* Nonlinear transformation:

h(x) = g1 (a(x))
e Qutput layer

f(x) = o (h(x))



Outline

* Network Components
e Neurons (Hidden Units)
* Output units
e Cost functions

* Architecture design
e Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Linear Units for Gaussian Output
Distributions

* Given the hidden units h, a layer of linear output units produces y =
W'h+ b

* Linear output layers are often used to produce the mean of a
conditional Gaussian distribution

p(ylx) = Ny|y,I)



Sigmoid Units for Bernoulli Output
Distributions

* Bernoulli output distributions: binary classification
* The goal is to define p(y = 1|x), which can be defined as follows:

p(y = 1|x) = o(w'h + b)



Softmax Units for Multinomial Output
Distributions

* Bernoulli output distributions: multi-class classification

* First, define a linear layer to predict the unnormalized log
probabilities of softmax:

z=WTh+0»b

* where z; = logp(y = i|x) . Formally, the softmax function is given by

exp(z;)
j €xp (zj)

p(y = ilx) =3



Multilayer Neural Networks

* Neural network with multiple hidden layers
* The output of previous layer as the input

of next layer: (k=1..., L)
a®) (x) = b + WHER(k-1)(x)

h® (x) = g(a™(x))

* Final output layer

h(E+) (x) = o(al“+1) (x)) = £(x)



Outline

* Network Components
e Neurons (Hidden Units)
* Output units
* Cost function

* Architecture design
e Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Maximum Likelihood

* Most of the time, neural networks are used to define a distribution
p(yt|xt; @). Therefore, the overall objective is defined as:

1
argmaxg ?2 logp(yt|xt; 0) + 20(0)
t



Outline

* Network Components
e Neurons (Hidden Units)
* Output units
e Cost functions

e Architecture design
e Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Universal Approximation

e Universal Approximation Theorem (Hornik, 1991)

* “asingle hidden layer neural network with a linear output unit can
approximate any continuous function arbitrary well, given enough hidden
units”

* However, we may not be able to find the right parameters ....
* The layer may be infeasibly large
* Optimizing neural networks is difficult ...



Deeper Networks are preferred

Effect of Depth
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Figure: Empirical results showing that deeper networks generalize better



Deeper Networks are preferred

Effect of Number of Parameters
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Figure: Deeper models tend to perform better with the same number of parameter



Deeper networks are preferred

* There exist families of functions which can be approximated
efficiently with deep networks but require a much larger model for
shallow networks

e Statistical reasons

* adeep models encodes a very general belief that the function we want to
learn should involve composition of several simple functions

* Or we believe the learning problem consists of discovering different levels of
variations, with the high-level ones defined on the low-level (simple) ones
(e.g., Pixel -> edge -> texton-> motif -> part -> object).



Outline

* Network Components
e Neurons (Hidden Units)
* Output units
e Cost functions

* Architecture design
e Capacity of neural networks
* Training
* Backpropagation with stochastic gradient descent



Backpropagation with Stochastic Gradient

Descent

e Gradient descent:

* Update the parameters in the direction of gradients

* Need to iterate over all the examples for every

* Stochastic gradient descent
* Perform updates after seeing each example

- Initialize: @ = {W® b . WEHDH pL+Dy /!

- Fort=1:T
- for each training example (x",y®)  ~
A = —Vol(f(x:0),yM) — A\VeQ(O)
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BackPropagation:Simple Chain Rule
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Forward Propagation

Require: Network depth. [

Require: W i c {1.....1}, the weight matrices of the model
Require: ¥",i € {1.....1}, the bias parameters of the model

Require: . the mmput to process
Require: y. the target output
h{[]} —
for kb =1...., [ do
a'®) = pk) L wk p=1)
hk) — f(a,(‘r"})
end for




Backward Propagation

After the forward computation, compute the gradient on the output layer:
g < Vg =VyL(y.y)
for k=1[0.1—-1.....1do

Convert the gradient on the layer’s output into a gradient into the pre-

nonlinearity activation (element-wise multiplication if f is element-wise):
g—V, »n]=gC f’(ﬂ.“"}]
Compute gradients on weights and biases (including the regularization term.
where needed):
Vi =g+ AV 2(0)
Vw ] =g hF DT 4 AVw k) 2(6)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g+ Vet =WWHTg

end for
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