Convolutional Neural Networks

Jian Tang

tangjianpku@gmail.com

HEC MONTREAL

Convolutional Neural Networks for Object
Recognition

| 12 pixels

» “sun flower”

Object Recognition

150 pixels

Computer Vision

* Intuitions
* Deal with very high-dimensional inputs: 150 x 150 pixels = 22500 inputs
* Can exploit the 2D topology of pixels
e Can build in invariance to certain variations, e.g., translation, etc.

* Techniques
* Local connectivity
* Parameter sharing
e Convolution
* Pooling/subsampling hidden units

Deep Convolutional Neural Networks

Very deep network Predlctlon
Convolution High-level feature

. Poollng space
- Normalization
- Densely connected

Local Connectivity

e Use a local connectivity of hidden units

> Each hidden unit is connected only to a
sub-region (patch) of the input image

> Itis connected to all channels: 1 if
grayscale, 3 (R, G, B) if color image

* Why local connectivity?

> Fully connected layer has a lot of
parameters to fit, requires a lot of data

> Spatial correlation is local

= receptive field

Local Connectivity

e Units are connected to all channels:

> 1 channel if grayscale image,
» 3 channels (R, G, B) if color image

Local Connectivity
e Example: 200x200 image, 40K hidden units, ~2B parameters!

Spatial correlation is local
Too many parameters, will require a
lot of training datal

Local Connectivity

* Example: 200x200 image, 40k hidden units, filter size 10*10, ~4M
parameters

This parameterization is good
when input image is registered

Parameter Sharing

e Share matrix of parameters across some units

> Units that are organized into the ‘feature map” share parameters

> Hidden units within a feature map cover different positions in the
image

feature map | feature map 2 feature map 3

20 Q0 0 000
\ ‘

N

same color

same matrix of
connection

Wi is the matrix connecting
the i input channel with the

jth feature map .

Parameter Sharing

e Why parameter sharing?

> Reduces even more the number of parameters

> Will extract the same features at every position (features are
“equivariant”)

feature map | feature map 2 feature map 3

Q2 Q Q00000
\‘\ "

‘)

same color

same matrix of
connection

W, is the matrix connecting
the i!" input channel with the

jth feature map .

Parameter Sharing

e Share matrix of parameters across certain units

» Convolutions with certain kernels

Discrete Convolution

e The convolution of an image x with a kernel k is computed as
follows:

(x = k)ij — z Xi+p,j+qkr—pr—q
pq

e Example:

Discrete Convolution

* The convolution of an image x with a kernel k is computed as
follows:

(x = k)ij — z Xi+p,j+qkr—pr—q
pq

e Example:

/\k — Kk with rows and columns flipped

Discrete Convolution

» The convolution of an image x with a kernel k is computed as
follows:

(x = k)ij — z Xi+p,j+qkr—pr—q
pq

e Example: 1x0+0.5x80+0.25x20+0x40=45

1
k

Discrete Convolution

» The convolution of an image x with a kernel k is computed as
follows:

(x = k)ij — z Xi+p,j+qkr—pr—q
pq

e Example: 1x80+05x40+0.25x40+0x0=110

B
1
k

Discrete Convolution

e The convolution of an image x with a kernel k is computed as
follows:

(x * k)ij — z Xi+p,j+qKr—pr—q
pq

e Example: 1x20+0.5x40+0.25x0+0x0=40

r l :
* o—
1

k

Discrete Convolution

» The convolution of an image x with a kernel k is computed as
follows:

(x = k)ij — z Xitpj+qKkr—pr—q
pq

e Example: 1x40+05x0+0.25x0+0x40=40

r @
k = L
1

k

Discrete Convolution

e Pre-activations from channel x; into feature map y;can be
computed by:

> getting the convolution kernel where kij =VT/ij from the
connection matrix Wij

> applying the convolution x; . k;

e This is equivalent to computing the discrete correlation
of x; with W;

Example

e |llustration:

128 128

128 128

Example

e With a non-linearity, we get a detector of a feature at any
position in the image:

(xi * kij)’ where Wij — Wij

0.02

0.02

0.02

0.02 0.02 0.02

sigm (0.02 x; * kij -4)

Example

e Can use “zero padding” to allow going over the borders (*)

Example

~— T

o OO

~ T T

Multiple Feature Maps

e Example: 200x200 image, 100 filters,
filter size 10x10, 10K parameters

Pooling

* Pool hidden units in same neighborhood
* Pooling is performed in non-overlapped neighborhoods (subsampling)

- X, is the it channel of input
Yijk = MaXLj j4p k+q

Y

- X;;x is value of the i" feature
map at position j,k

Pooling / Subsampling - pis vertical index in local
neighborhood

- qis horizontal index in local
neighborhood

- Yix Is pooled / subsampled
layer

Jarret et al. 2009

Pooling
e Pool hidden units in same neighborhood

> an alternative to “max” pooling is “average” pooling

Yijk = iz Z Ti j+p k+q - X; is the i channel of input
e - X« is value of the ith feature
map at position j,k
Pooling / Subsampling - pis vertical index in local
neighborhood

- @ is horizontal index in local
neighborhood

- Yjk Is pooled / subsampled
layer

- m is the neighborhood
Jarret et al. 2009 height/width

Example: Pooling

e |llustration of pooling/subsampling operation

Max max

0.02 FLoRE) 019 0.02

0.02 ‘ 0.02 0.02
Max

0.02 0.02 0.02 max

e Why pooling?

> Introduces invariance to local translations

> Reduces the number of hidden units in hidden layer

Translation Invariance

e |llustration of local translation invariance

> both images result in the same feature map after pooling/

subsampling

0.19 0.19

255
ot - ke
255

Convolutional Neural Network

e Convolutional neural network alternates between the
convolutional and pooling layers

Layer 3
256@6x6 Layer 4

256@1x1 OvtPut

101

Layer 1

. 64x75x75 Layer 2
input 64@14x14
83x83

/
9x9

W

9x9 i

X - 10x10 pooling, ¢onyolution 6x6 pooling fully
convolution 545 syhsampling (4096 kernels) Ax4 sub connected
(64 kernels) B

From Yann LeCun’s slides

Convolutional Neural Network

 For classification: Output layer is a regular, fully connected layer
with softmax non-linearity

» Output provides an estimate of the conditional probability of each

class

e The network is trained by stochastic gradient descent

> Backpropagation is used similarly as in a fully connected network

> We have seen how to pass gradients through element-wise
activation function

> We also need to pass gradients through the convolution operation

and the pooling operation

Invariance by Dataset Expansion

e I[nvariances built-in in convolutional network:

> small translations: due to convolution and max pooling

> small illumination changes: due to local contrast normalization

e [t is not invariant to other important variations such as rotations
and scale changes

e However, it's easy to artificially generate data with such
transformations

» could use such data as additional training data
> neural network can potentially learn to be invariant to such

transformations

Generating Additional Examples

Elastic Distortions

e Can add “elastic” deformations (useful in character recognition)

e We can do this by applying a “distortion field” to the image

> adistortion field specifies where to displace each pixel value

random distortion

Bishop’s book

Elastic Distortions

e Can add “elastic” deformations (useful in character recognition)

* We can do this by applying a “distortion field” to the image

> adistortion field specifies where to displace each pixel value

smoothed
random distortion

Bishop’s book

Elastic Distortions

e Can add “elastic” deformations (useful in character recognition)

* We can do this by applying a “distortion field” to the image

> a distortion field specifies where to displace each pixel value

smoothed
random distortion

Bishop’s book

ImageNet Dataset

« 1.2 million images, 1000 classes

Examples of Hammer

r N] Y

| b . \
x -
. |

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009

Important Breakthroughs

* Deep Convolutional Nets for Vision (Supervised)

Krizhevsky, A., Sutskever, |. and Hinton, G. E., ImageNet Classification with Deep
Convolutional Neural Networks, NIPS, 2012.

~ container ship motor scooter eopard

mite tail ship motor leapard

black widow lifeboat go-kart jaguar

224 ~\,‘ Stria Max 138 Max cockroach amphibian moped cheetah

“of 4 pooling pooling tick fireboat bumper car snow leopard

3 48 starfish drilling platform golfcart Egyptian cat
1.2 million training images :

g g grille mushroom cherry adagascar cat

1 000 C I a S S e S vertible ’ agaric dalmatian squ | monkey

grille oom grape spider monkey

ick jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man’'s-fingers currant howler monkey

How to Select the Right Architecture?

* From manual tuning features => manual tuning architectures

* Many hyper-parameters
* Number of layers (depth), number of feature maps (width)

 Cross validation
* Grid search (need lots of GPUs)

* Smarter Strategies
* Random search
* Bayesian optimization
* Reinforcement Learning (Zoph et al. 2016)

AlexNet

* 8 layers total

Softmax Output
9

Layer 7: Full

e Trained on Imagenet . TS g
LT

dataset [Deng et al. CVPR'09] Layer 6: Full
== .
* 18.2% top-5 error \ Layer 5: Conv + Pool
Zhs
Layer 4: Conv
Z=
Layer 3: Conv

[From Rob Fergus’ CIFAR 2016 tutorial] [Input Image]

AlexNet

 Remove top fully connected layer 7

L Softmax Output 1

e Drop ~16 million parameters Tj

Layer 6: Full
e Only 1.1% drop in performance!) =5 .
Layer 5: Conv + Pool
N ==)
Layer 4: Conv
ZS
Layer 3: Conv

[From Rob Fergus’ CIFAR 2016 tutorial] [Input Image }

AlexNet

e Let us remove upper feature extractor layers [Softmax Output

and fully connected: H

-

> Layers3,4,6and 7 (b
Layer 6: Full
) =S
e Drop ~50 million parameters Layer 5: Conv + Pool
. /X J

e 33.5 drop in performance!

e Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial] [Input Image]

GoogleNet

i 4
i
i 4 Hgidy
I Eiaiiiggﬁiﬂﬂiiﬁgi*ﬁ
gajpajatipiig g litantyy MM
HAT N HOH
« 24 layer model that uses so-called inception Convolution
module. Pooling

Other

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

GoogleNet

e GoogLeNet inception module:

> Multiple filter scales at each layer

> Dimensionality reduction to keep computational requirements down

A n u m be r Filter
f f It 1 X 1 concatenation
OrTHHers A
3x3 convolutions 5x5 convolutions 1x1 convolutions
3X3 1x1 convolutions A))

1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

GoogleNet

'y
aefaaaddidtye gag
i Eﬁ ﬁﬁia'i

e Width of inception modules ranges from 256 filters (in early modules) to
1024 in top inception modules.

T
EEE

e Can remove fully connected layers on top completely
 Number of parameters is reduced to 5 million

* 6.7% top-5 validation error on Imagnet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

VGG-19 34-layer plain 34-layer residual

image image image
output
° size: 224 3x3 conv, 64
pool, /2
output
size: 112

3x3 conv, 128

[33conv128 | | x7conv,64,/2 | | 7x7conv,64,2 |

Really, really deep convnets do not train well, 7 1

size: 56 3x3 conv, 256 3x3 conv, 64 33conv, 64|

v
\ 4 33conv, 256 |

3x3 conv, 256

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except | reported on the test set).

3x3 conv, 256 3x3 conv, 256

weight layer
]-“(X) } relu

weight layer

3x3 conv, 256 3x3conv, 256 |

3x3 conv, 512, /2 3x3cony,512,/2 |

X With ensembling, 3.57% top-5 = ="
identity test error on ImageNet

v
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3conv,512 |

v
313 conv, 512

3x3cony, 512 |

3x3 conv, 512

3x3 conv, 512

[| [| [
. v
E . g . CI FAR1 O . | 33conv,256 | | 338conv,64 | | 3x3cony, 64
» 0 [33conv,256 | [3x3conv64 |) c:w, 64 |
[33conv,256 | [33conve4 | | 3x3conv, 64
§ — 56 layer [33conv,64 | [33conv64 |
g R -
o) = [33conv, 64 | [33convea |
= Y.
E 10 g 10 20-layer pool, /2 | 3x3conv,128,/2 | [33conv,128,/2 | T,
° 5 output v \
£ 56-layer = sz 28 3G oonv, 512 | [33conv,128 | [@owns | .-
£ 5 T . 2. 20
< = [33conys512 | [33conv,128 | [3x3conv, 128 |
b=
= 20-layer v
[3x3cony,512 | [3x3conv, 128 | [33conv,128 |
%o i 2 L3 g 5 o 0 i 2 L3 ¥ 3 o [33cnv,512 | [33conv,128 | [38conv, 128 |
iter. (1e4) iter. (1e4) v
[3x3conv, 128 | [3x3cony, 128
. . “ [33conv,128 | [3x3conv, 128 |
" v
Key idea: introduce “pass e e i s
method top-1 err. top-5 err. ot Y ¥ e
» " - 00l, /2 3x3 conv, 256, /2 3x3 conv, 256, /2 T
through” into each layer VGG (411 (LSVRC'14) Y A ' o Y
GoogLeNet [44] (ILSVRC’14) _ 7.89 [33cony,512 | [3 ca;v, 256 | [33cony, 256| ______ -
VGG [41] (v5) 24.4 71 | 3x3cony,512 | [3x3conv,256 | [3x3conv, 256 |
v
PReLU-net [13] 21.59 5.71 [3@conys512 | [33conv,256 | [33 conv, 256
.) | v
T h u S O n Iy res I d u a I n OW BN-inception [16] 21.99 5.81 [3a3conv,512 | [33,25 | [33conv,256 |
ResNet-34 B 21.84 571 [e cotv, 26 | [3 mtv, 256
needs tO be |earned ResNet-34 C 21.53 5.60 v
[33conv,256 | [33conv,256 |
ResNet-50 20.74 5.25 v
X3 conv, 2. X3 conv, 256
ResNet-101 19.87 4.60 s m .
X ResNet-152 19.38 4.49 [33conv,256 | [33conv, 25 |
[] [
[| [
[] [
[| [
[] [
[] [
[| [
[] [
[| [

3x3 conv, 512 3x3cony,512 |

A 4 v Y
output
a1 fc 4096 avg pool avg pool
[fc 4096 | [fc 1000 [fc 1000

[He, Zhang, Ren, Sun, CVPR 2016]

Selecting the Architecture
e Task dependent

e Cross-validation
e [Convolution — pooling]* + fully connected layer

 The more data: the more layers and the more kernels

> Look at the number of parameters at each layer

» Look at the number of flops at each layer

e Computational resources

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Optimization Tricks

« SGD with momentum, batch-normalization, and dropout usually
works very well

 Pick learning rate by running on a subset of the data

> Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training
e Use RelLU nonlinearity

e |nitialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

‘From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Improve Generalization

* Weight sharing (greatly reduce the number of parameters)
e Data augmentation (e.g., jittering, noise injection, etc.)
e Dropout

 Weight decay (L2, L1)

e Sparsity in the hidden units

e Multi-task (unsupervised learning)

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

References

* Chapter 9, deep learning book

