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Computer Vision  
•  Design algorithms that can process visual data to accomplish a given task:  

Ø  For example, object recognition: Given an input image, identify 

which object it contains 

Object Recognition

Convolutional Neural Networks for Object
Recognition



Computer Vision

• Intuitions
• Deal with very high-dimensional inputs: 150 x 150 pixels = 22500 inputs
• Can exploit the 2D topology of pixels
• Can build in invariance to certain variations, e.g., translation, etc.

• Techniques
• Local connectivity
• Parameter sharing
• Convolution
• Pooling/subsampling hidden units



Deep Convolutional Neural Networks
Prediction Very deep network 

…. 

High-level feature 
space 

•  Convolution 
•  Pooling 
•  Normalization 
•  Densely connected 

Deep Convolutional Nets 



Local ConnectivityLocal Connectivity 
•  Use a local connectivity of hidden units 

Ø  Each hidden unit is connected only to a 
sub-region (patch) of the input image 

Ø  It is connected to all channels: 1 if 
grayscale, 3 (R, G, B) if color image 

•  Why local connectivity? 

Ø  Fully connected layer has a lot of 
parameters to fit, requires a lot of data 

Ø  Spatial correlation is local 



Local ConnectivityLocal Connectivity 
•  Units are connected to all channels: 

Ø  1 channel if grayscale image,  
Ø  3 channels (R, G, B) if color image 



Local ConnectivityLocal Connectivity 
•  Example:  200x200 image, 40K hidden units, ~2B parameters! 

Ø  Spatial correlation is local 
Ø  Too many parameters, will require a 

lot of training data! 



Local Connectivity

• Example: 200x200 image, 40k hidden units, filter size 10*10, ~4M
parameters

Local Connectivity 
•  Example:  200x200 image, 40K hidden units, filter size 10x10, 
4M parameters! 

Ø  This parameterization is good 
when input image is registered 



Parameter SharingParameter Sharing  
•  Share matrix of parameters across some units 

Ø  Units that are organized into the ‘feature map” share parameters 

Ø  Hidden units within a feature map cover different positions in the 
image  

Wij	is	the	matrix	connecCng	
the	ith input	channel	with	the	
jth feature	map	

same color 
=  

same matrix of 
connection	



Parameter SharingParameter Sharing  
•  Why parameter sharing? 

Ø  Reduces even more the number of parameters 

Ø  Will extract the same features at every position (features are 
‘‘equivariant’’) 

Wij	is	the	matrix	connecCng	
the	ith input	channel	with	the	
jth feature	map	

same color 
=  

same matrix of 
connection	



Parameter Sharing
Parameter Sharing 

•  Share matrix of parameters across certain units 

Ø  Convolutions with certain kernels 



Discrete ConvolutionDiscrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q! ∗ # $% ='
()
!$*(,%*)#,-(,,-)



Discrete ConvolutionDiscrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

k̃ = k with rows and columns flipped 

! ∗ # $% ='
()
!$*(,%*)#,-(,,-)



Discrete ConvolutionDiscrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 0 + 0.5 x 80 + 0.25 x 20 + 0 x 40 = 45 

! ∗ # $% ='
()
!$*(,%*)#,-(,,-)



Discrete ConvolutionDiscrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 80 + 0.5 x 40 + 0.25 x 40 + 0 x 0 = 110 

! ∗ # $% ='
()
!$*(,%*)#,-(,,-)



Discrete ConvolutionDiscrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 20 + 0.5 x 40 + 0.25 x 0 + 0 x 0 = 40 

! ∗ # $% ='
()
!$*(,%*)#,-(,,-)



Discrete ConvolutionDiscrete Convolution  
•  The convolution of an image x with a kernel k is computed as 
follows: 

•  Example: 

(x ⇤ k)ij =
X

pq

xi+p,j+qkr�p,r�q

1 x 40 + 0.5 x 0 + 0.25 x 0 + 0 x 40 = 40 

! ∗ # $% ='
()
!$*(,%*)#,-(,,-)



Discrete ConvolutionDiscrete Convolution  
•  Pre-activations from channel xi  into feature map yj can be 
computed by: 

Ø  getting the convolution kernel where kij =Wij from the 
connection matrix Wij 

Ø  applying the convolution xi * kij  

~ 

•  This is equivalent to computing the discrete correlation  
of xi with Wij 



Example Example 
•  Illustration:  

x ⇤ kij , where Wij = W̃ij

Example 
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Example Example 
•  With a non-linearity, we get a detector of a feature at any 
position in the image:  

x ⇤ kij , where Wij = W̃ij

Example 

●  Calcul%d’une%couche%«%simple%cell%»%
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Example Example 
•  Can use ‘‘zero padding’’ to allow going over the borders ( * ) 



Example
Example 



Multiple Feature MapsMultiple Feature Maps 
•  Example:  200x200 image, 100 filters, 
filter size 10x10, 10K parameters 



Pooling

• Pool hidden units in same neighborhood
• Pooling is performed in non-overlapped neighborhoods (subsampling)

Pooling 
•  Pool hidden units in same neighborhood 

Ø  pooling is performed in non-overlapping neighborhoods 
(subsampling) 

-  xi is the ith channel of input 

-  xi,j,k is value of the ith feature 
map at position j,k 

-  p is vertical index in local 
neighborhood 

-  q is horizontal index in local 
neighborhood 

-  yijk is pooled / subsampled 
layer 

Jarret et al. 2009 

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

M

X

p,q

xi,j+p,k+q

1



Pooling
Pooling 

•  Pool hidden units in same neighborhood 

Ø  an alternative to ‘‘max’’ pooling is ‘‘average’’ pooling  

-  xi is the ith channel of input 

-  xi,j,k is value of the ith feature 
map at position j,k 

-  p is vertical index in local 
neighborhood 

-  q is horizontal index in local 
neighborhood 

-  yijk is pooled / subsampled 
layer 

-  m is the neighborhood    
height/width Jarret et al. 2009 

Computer vision

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 8, 2012

Abstract

Math for my slides “Computer vision”.

• H X ⇤

•
yijk = max

p,q
xi,j+p,k+q

•
yijk =

1

m2

X

p,q

xi,j+p,k+q

• vijk = xijk �
P

ipq wpqxi,j+p,k+q

• yijk = vijk/max(c,�jk)

• �jk = (
P

ipq wpqv2i,j+p,k+q)
1/2

1



Example: PoolingExample: Pooling 
•  Illustration of pooling/subsampling operation 

•  Why pooling? 

Ø  Introduces invariance to local translations 

Ø  Reduces the number of hidden units in hidden layer  

Example 
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Translation InvarianceTranslation Invariance 
•  Illustration of local translation invariance 

Ø  both images result in the same feature map after pooling/

subsampling 



Convolutional Neural NetworkConvolutional Network  
•  Convolutional neural network alternates between the 
convolutional and pooling layers 

From Yann LeCun’s slides 



Convolutional Neural Network
•  For classification: Output layer is a regular, fully connected layer 
with softmax non-linearity 

Ø  Output provides an estimate of the conditional probability of each 

class 

•  The network is trained by stochastic gradient descent 

Ø  Backpropagation is used similarly as in a fully connected network 

Ø  We have seen how to pass gradients through element-wise 

activation function 

Ø  We also need to pass gradients through the convolution operation 

and the pooling operation 

Convolutional Network  



Invariance by Dataset ExpansionInvariance by Dataset Expansion 
•  Invariances built-in in convolutional network: 

Ø  small translations: due to convolution and max pooling 

Ø  small illumination changes: due to local contrast normalization 

•  It is not invariant to other important variations such as rotations 
and scale changes 

•  However, it’s easy to artificially generate data with such 
transformations 

Ø  could use such data as additional training data 

Ø  neural network can potentially learn to be invariant to such 

transformations 



Generating Additional Examples
Generating Additional Examples 



Elastic DistortionsElastic Distortions 
•  Can add ‘‘elastic’’ deformations (useful in character recognition) 

•  We can do this by applying a ‘‘distortion field’’ to the image 

Ø  a distortion field specifies where to displace each pixel value 

Bishop’s book 



Elastic DistortionsElastic Distortions 
•  Can add ‘‘elastic’’ deformations (useful in character recognition) 

•  We can do this by applying a ‘‘distortion field’’ to the image 

Ø  a distortion field specifies where to displace each pixel value 

Bishop’s book 



Elastic DistortionsElastic Distortions 
•  Can add ‘‘elastic’’ deformations (useful in character recognition) 

•  We can do this by applying a ‘‘distortion field’’ to the image 

Ø  a distortion field specifies where to displace each pixel value 

Bishop’s book 



ImageNet DatasetImageNet Dataset 
•  1.2 million images, 1000 classes 

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009 

Examples of Hammer 



Important BreakthroughsImportant	Breakthroughs	
• 	Deep	ConvoluGonal	Nets	for	Vision	(Supervised)		

Krizhevsky,	A.,	Sutskever,	I.	and	Hinton,	G.	E.,	ImageNet	ClassificaGon	with	Deep	
ConvoluGonal	Neural	Networks,	NIPS,	2012.		

1.2	million	training	images	
1000	classes	



How to Select the Right Architecture?

• From manual tuning features => manual tuning architectures
• Many hyper-parameters
• Number of layers (depth), number of feature maps (width)

• Cross validation
• Grid search (need lots of GPUs)
• Smarter Strategies
• Random search
• Bayesian optimization
• Reinforcement Learning (Zoph et al. 2016)



AlexNet AlexNet 
•  8 layers total 

•  Trained on Imagenet 
dataset [Deng et al. CVPR’09] 

•  18.2% top-5 error  

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

Layer 7: Full 

[From Rob Fergus’ CIFAR 2016 tutorial]  



AlexNet AlexNet 
•  Remove top fully connected layer 7  

•  Drop ~16 million parameters 

•  Only 1.1% drop in performance! 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

[From Rob Fergus’ CIFAR 2016 tutorial]  



AlexNet AlexNet 
•  Let us remove upper feature extractor layers 
and fully connected: 

•  Drop ~50 million parameters 

•  33.5 drop in performance! 

•  Depth of the network is the key.  

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Softmax Output 

Layer 2: Conv + Pool 

Layer 5: Conv + Pool 

Ø  Layers 3,4, 6 and 7 

[From Rob Fergus’ CIFAR 2016 tutorial]  



GoogLeNet GoogLeNet 

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014] 

Convolution 
Pooling 
Softmax 
Other 

•  24 layer model that uses so-called inception 
module.  



GoogLeNet GoogLeNet 

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014] 

•  GoogLeNet inception module: 

Ø  Multiple filter scales at each layer 

Ø  Dimensionality reduction to keep computational requirements down 

1x1 
number 
of filters 

3x3 

5x5 

(a) Inception module, naı̈ve version

�[��FRQYROXWLRQV

�[��FRQYROXWLRQV �[��FRQYROXWLRQV

)LOWHU�
FRQFDWHQDWLRQ

3UHYLRXV�OD\HU

�[��PD[�SRROLQJ�[��FRQYROXWLRQV �[��FRQYROXWLRQV

�[��FRQYROXWLRQV

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5



GoogLeNetGoogLeNet 

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014] 

•  Width of inception modules ranges from 256 filters (in early modules) to 
1024 in top inception modules. 

•  Can remove fully connected layers on top completely 

•  Number of parameters is reduced to 5 million 

•  6.7% top-5 validation error on Imagnet 



Residual Networks  

[He, Zhang, Ren, Sun, CVPR 2016] 
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.
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With ensembling, 3.57% top-5 
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-
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Selecting the ArchitectureChoosing the Architecture 
•  Task dependent 

•  Cross-validation 

•   [Convolution → pooling]* + fully connected layer  

•  The more data: the more layers and the more kernels 

Ø  Look at the number of parameters at each layer 

Ø  Look at the number of flops at each layer 

•  Computational resources 

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]  



Optimization TricksOptimization Tricks 
•  SGD with momentum, batch-normalization, and dropout usually 
works very well 

•  Pick learning rate by running on a subset of the data 
Ø  Start with large learning rate & divide by 2 until loss does not diverge 

Ø  Decay learning rate by a factor of ~100 or more by the end of training  

•  Use ReLU nonlinearity  

•   Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation. 

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]  



Improve GeneralizationImproving Generalization 
•  Weight sharing (greatly reduce the number of parameters) 

•  Data augmentation (e.g., jittering, noise injection, etc.) 

•  Dropout 

•   Weight decay (L2, L1) 

•   Sparsity in the hidden units 

•   Multi-task (unsupervised learning)  

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]  
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