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Relational Data/Graphs are Ubiquitous

• Graphs: a general and flexible data structure to encode the relations
between objects
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Relational Prediction and Reasoning
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Figure 1: The Neural State Machine is a graph network that simulates the computation of an automaton. For the
task of VQA, the model constructs a probabilistic scene graph to capture the semantics of a given image, which
it then treats as a state machine, traversing its states as guided by the question to perform sequential reasoning.

Motivated to alleviate these deficiencies and bring the neural and symbolic approaches more closely
together, we propose the Neural State Machine, a differentiable graph-based model that simulates
the operation of an automaton, and explore it in the domain of visual reasoning and compositional
question answering. Essentially, we proceed through two stages: modeling and inference. Starting
from an image, we first generate a probabilistic scene graph [41, 47] that captures its underlying
semantic knowledge in a compact form. Nodes correspond to objects and consist of structured
representations of their properties, and edges depict both their spatial and semantic relations. Once
we have the graph, we then treat it as a state machine and simulate an iterative computation over
it, aiming to answer questions or draw inferences. We translate a given natural language question
into a series of soft instructions, and feed them one-at-a-time into the machine to perform sequential
reasoning, using attention to traverse its states and compute the answer.

Drawing inspiration from Bengio’s consciousness prior [12], we further define a set of semantic
embedded concepts that describe different entities and aspects of the domain, such as various kinds
of objects, attributes and relations. These concepts are used as the vocabulary that underlies both the
scene graphs derived from the image as well as the reasoning instructions obtained from the question,
effectively allowing both modalities to “speak the same language”. Whereas neural networks typically
interact directly with raw observations and dense features, our approach encourages the model to
reason instead in a semantic and factorized abstract space, which enables the disentanglement of
structure from content and improves its modularity.

We demonstrate the value and performance of the Neural State Machine on two recent Visual Question
Answering (VQA) datasets: GQA [39] which focuses on real-world visual reasoning and multi-step
question answering, as well as VQA-CP [3], a recent split of the popular VQA dataset [2, 25] that
has been designed particularly to evaluate generalization. We achieve state-of-the-art results on
both tasks under single-model settings, substantiating the robustness and efficiency of our approach
in answering challenging compositional questions. We then construct new splits leveraging the
associated structured representations provided by GQA and conduct further experiments that provide
significant evidence for the model’s strong generalization skills across multiple dimensions, such
as novel compositions of concepts and unseen linguistic structures, validating its versatility under
changing conditions.

Our model ties together two important qualities: abstraction and compositionality, with the respective
key innovations of representing meaning as a structured attention distribution over an internal vo-
cabulary of disentangled concepts, and capturing sequential reasoning as the iterative computation
of a differentiable state machine over a semantic graph. We hope that creating such neural form
of a classical model of computation will encourage and support the integration of the connection-
ist and symbolic methodologies in AI, opening the door to enhanced modularity, versatility, and
generalization.
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Visual relational reasoning 
(Hudson et al. 2019)
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Figure 4: Case Study. Different forms of cognitive graphs in our results, i.e., Tree, Directed Acyclic Graph (DAG),
Cyclic Graph. Circles are candidate answer nodes while rounded rectangles are hop nodes. Green circles are the
final answers given by CogQA and check marks represent the annotated ground truth.

work but outputs answer spans with maximum
predicted probability. On Ans metrics, the im-
provement over the best competitor decreases
about 50%, highlighting the reasoning capacity of
GNN on cognitive graphs.

Case Study We show how the cognitive graph
clearly explains complex reasoning processes in
our experiments in Figure 4. The cognitive graph
highlights the heart of the question in case (1) –
i.e., to choose between the number of members in
two houses. CogQA makes the right choice based
on semantic similarity between “Senate” and “up-
per house”. Case (2) illustrates that the robust-
ness of the answer can be boosted by exploring
parallel reasoning paths. Case (3) is a semantic

retrieval question without any entity mentioned,
which is intractable for CogQA-onlyQ or even hu-
man. Once combined with information retrieval,
our model finally gets the answer “Marijus Ado-
maitis” while the annotated ground truth is “Ten
Walls”. However, when backtracking the reason-
ing process in cognitive graph, we find that the
model has already reached “Ten Walls” and an-
swers with his real name, which is acceptable and
even more accurate. Such explainable advantages
are not enjoyed by black-box models.

5 Related work

Machine Reading Comprehension The research
focus of machine reading comprehension (MRC)
has been gradually transferred from cloze-style
tasks (Hermann et al., 2015; Hill et al., 2015) to
more complex QA tasks (Rajpurkar et al., 2016)
recent years. Compared to the traditional compu-
tational linguistic pipeline (Hermann et al., 2015),

neural network models, for example BiDAF (Seo
et al., 2017a) and R-net (Wang et al., 2017), ex-
hibit outstanding capacity for answer extraction in
text. Pre-trained on large corpra, recent BERT-
based models nearly settle down the single para-
graph MRC-QA problem with performances be-
yond human-level, driving researchers to pay more
attention to multi-hop reasoning.

Multi-Hop QA Pioneering datasets of multi-hop
QA are either based on limited knowledge base
schemas (Talmor and Berant, 2018), or under mul-
tiple choices setting (Welbl et al., 2018). The
noise in these datasets also restricted the devel-
opment of multi-hop QA until high-quality Hot-
potQA (Yang et al., 2018) is released recently.
The idea of “multi-step reasoning” also breeds
multi-turn methods in single paragraph QA (Ku-
mar et al., 2016; Seo et al., 2017b; Shen et al.,
2017), assuming that models can capture informa-
tion at deeper level implicitly by reading the text
again.

Open-Domain QA Open-Domain QA (QA at
scale) refers to the setting where the search space
of the supporting evidence is extremely large.
Approaches to get paragraph-level answers has
been thoroughly investigated by the information
retrieval community, which can be dated back to
the 1990s (Belkin, 1993; Voorhees et al., 1999;
Moldovan et al., 2000). Recently, DrQA (Chen
et al., 2017) leverages a neural model to extract the
accurate answer from retrieved paragraphs, usu-
ally called retrieval-extraction framework, greatly
advancing this time-honored research topic again.
Improvements are made to enhance retrieval by
heuristic sampling (Clark and Gardner, 2018) or

Multi-hop Question answering

(Ding et al. 2019)



Statistical Relational Learning
• Probabilistic graphical models for relational data

• Markov Networks (Ross et al. 1980)
• Conditional Random Fields (Lafferty et al. 2001)
• Markov Logic Networks (Richardson and Domingos, 2006)

• Pros:
• Captures uncertainty and domain knowledge
• Collective inference

• Cons:
• Limited model capacity
• Inference is difficult
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GMNN: Graph Markov Neural Networks

relational data is an important direction in machine learn-
ing with various applications, such as object classification
and link prediction. In this paper, we focus on a fundamen-
tal problem, semi-supervised object classification, as many
other applications can be reformulated as this problem.

Formally, the problem of semi-supervised object classifi-
cation considers a graph G = (V,E,xV ), in which V is a
set of objects, E is a set of edges between objects, and xV

stands for the attributes of all the objects. The edges in E

may have multiple types, which represent different relations
among objects. In this paper, for simplicity, we assume all
edges belong to the same type. Given the labels yL of a few
labeled objects L ⇢ V , the goal is to predict the labels yU

for the remaining unlabeled objects U = V \ L.

This problem has been extensively studied in the literature
of both statistical relation learning (SRL) and graph neural
networks (GNN). Essentially, both types of methods aim to
model the distribution of object labels conditioned on the
object attributes and the graph structure, i.e., p(yV |xV , E).
Next, we introduce the general idea of both methods. For
notation simplicity, we omit E in the following formulas.

3.2. Statistical Relational Learning

Most SRL methods model p(yV |xV ) with conditional ran-
dom fields, which employ the following formulation:

p(yV |xV ) =
1

Z(xV )

Y

(i,j)2E

 i,j(yi,yj ,xV ). (1)

Here, (i, j) is an edge in the graph G, and  i,j(yi,yj ,xV )
is the potential score defined on the edge. Typically, the
potential score is computed as a linear combination of some
hand-crafted feature functions, such as logical formulae.

With this formulation, predicting the labels for unlabeled
objects becomes an inference problem, i.e., inferring
the posterior label distribution of the unlabeled objects
p(yU |yL,xV ). Exact inference is usually infeasible due to
the complicated structures between object labels. Therefore,
some approximation inference methods are often utilized,
such as loopy belief propagation (Murphy et al., 1999).

3.3. Graph Neural Network

Different from SRL methods, GNN methods simply ignore
the dependency of object labels and they focus on learning
effective object representations for label prediction. Specif-
ically, the joint distribution of labels is fully factorized as:

p(yV |xV ) =
Y

n2V

p(yn|xV ). (2)

Based on the formulation, GNNs will infer the label distri-
bution p(yn|xV ) for each object n independently. For each
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Figure 1. Framework overview. Yellow and grey squares are la-
beled and unlabeled objects. Grey/white grids are attributes. His-
tograms are label distributions of objects. Orange triple circles are
object representations. GMNN is trained by alternating between
an E-step and an M-step. See Sec. 4.4 for the detailed explanation.

object n, GNNs predict the label in the following way:

h = g(xV , E) p(yn|xV ) = Cat(yn|softmax(Whn)),

where h 2 R|V |⇥d is the representations of all the objects,
and hn 2 Rd is the representation of object n. W 2 RK⇥d

is a linear transformation matrix, with d as the representa-
tion dimension and K as the number of label classes. Cat
stands for categorical distributions. Basically, GNNs focus
on learning a useful representation hn for each object n.
Specifically, each hn is initialized as the attribute repre-
sentation of object n. Then each hn is iteratively updated
according to its current value and the representations of n’s
neighbors, i.e., hNB(n). For the updating function, the graph
convolutional layer (GC) (Kipf & Welling, 2017) and the
graph attention layer (GAT) (Veličković et al., 2018) can be
used, or in general the neural message passing layer (Gilmer
et al., 2017) can be utilized. After multiple layers of update,
the final object representations are fed into a linear softmax
classifier for label prediction. The whole framework can be
trained in an end-to-end fashion with a few labeled objects.

4. GMNN: Graph Markov Neural Network

In this section, we introduce our approach called the Graph
Markov Neural Network (GMNN) for semi-supervised ob-
ject classification. The goal of GMNN is to combine the
advantages of both the statistical relational learning methods
and graph neural networks, so that we can learn effective ob-
jective representations for predicting object labels, as well as
model the dependency between object labels. Specifically,
GMNN models the joint distribution of object labels condi-
tioned on object attributes p(yV |xV ) by using a conditional
random field, which is optimized with a pseudolikelihood
variational EM framework. In the E-step, a graph neural
network is used to learn object representations for predicting
the object labels. In the M-step, another graph neural net-
work is employed to model the local dependency of object
labels. Next, we introduce the details of the approach.
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Figure: Conditional Random Fields



Graph Representation Learning
• Graph Neural Networks

• Graph convolutional Networks (Kipf et al. 2016)

• Graph attention networks (Veličković et al. 2017)

• Neural message passing (Gilmer et al. 2017)

• Node Embedding and Knowledge Graph Embedding
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TransE

(Bordes et al. 2013)

RotatE

(Sun et al. 2019)

DeepWalk, LINE, node2vec

(Perozzi et al. 2014, Tang et al. 2015,

Grover et al. 2016 )

h
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Graph convolutional Networks

(Kipf et al. 2016)



Link Prediction on Knowledge Graphs

• A set of facts K" = {(ℎ, (, ))} represented as triplets
• (Bill_Gates, Co_Founder, Microsoft)

• A variety of applications
• Question answering
• Search
• Recommender Systems
• Natural language understanding
• …

• A fundamental problem: predicting the missing facts by reasoning
with existing facts

6
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Traditional Symbolic Logic-Rule based approaches

• Expert systems: hard logic rules
• E.g., ∀", $, Husband X, $ => Wife(Y, X)
• ∀", $, Live(X, Y) => Nationality(X, Y)

• Problematic as logic rules can be imperfect or contradictory
• We must handle the uncertainty of logic rules
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Markov Logic Networks
(Richardson and Domingos, 2006)
• Combines first-order logic and probabilistic graphical models
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(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update
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Live(X, Y) => Nationality (X, Y)

Politician_of(X, Y) => Nationality (X, Y)

Born(X,Y)∧City_of (Y,Z) => Nationality(X, Z)
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3 Preliminary
3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
Due to the high cost of knowledge graph construction, the coverage of knowledge graphs is usually
limited. Therefore, a critical problem on knowledge graphs is to predict the missing facts.

Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of relations, and
O is a set of observed (h, r, t) triplets, the goal is to infer the missing triplets by reasoning with the
observed triplets. Following existing studies [25], the problem can be reformulated in a probabilistic
way. Each triplet (h, r, t) is associated with a binary indicator variable v(h,r,t). v(h,r,t) = 1 means
(h, r, t) is true, and v(h,r,t) = 0 otherwise. Given some true facts vO = {v(h,r,t) = 1}(h,r,t)2O, we
aim to predict the labels of the remaining hidden triplets H , i.e., vH = {v(h,r,t)}(h,r,t)2H . We will
discuss how to generate the hidden triplets H later in Sec. 4.4.

This problem has been extensively studied in both traditional logic rule-based methods and recent
knowledge graph embedding methods. For logic rule-based methods, we mainly focus on one
representative approach, the Markov logic network. Essentially, both types of methods aim to model
the joint distribution of the observed and hidden triplets p(vO,vH). Next, we briefly introduce the
Markov logic network (MLN) [32] and the knowledge graph embedding methods [3, 42, 45].

3.2 Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed and the
hidden triplets, where the potential function is defined by the first-order logic. Some common logic
rules to encode domain knowledge include: (1) Composition Rules. A relation rk is a composition of
ri and rj means that for any three entities x, y, z, if x has relation ri with y, and y has relation rj with
z, then x has relation rk with z. Formally, we have 8x, y, z 2 E,v(x,ri,y) ^ v(y,rj ,z) ) v(x,rk,z).
(2) Inverse Rules. A relation rj is an inverse of ri indicates that for two entities x, y, if x has relation
ri with y, then y has relation rj with x. We can represent the rule as 8x, y 2 E,v(x,ri,y) ) v(y,rj ,x).
(3) Symmetric Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation
r with y, then y also has relation r with x. Formally, we have 8x, y 2 E,v(x,r,y) ) v(y,r,x). (4)
Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity pair x, y, if x and y
have relation ri, then they also have relation rj . Formally, we have 8x, y 2 E,v(x,ri,y) ) v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the entity
placeholders in the logic rule with real entities in knowledge graphs. For example, for a subre-
lation rule, 8x, y,v(x,Born in,y) ) v(x,Live in,y), two groundings in Gl can be v(Newton,Born in,UK) )
v(Newton,Live in,UK) and v(Einstein,Born in,German) ) v(Einstein,Live in,German). We see that the former one is
true while the latter one is false. To handle such uncertainty of logic rules, Markov logic networks
introduce a weight wl for each rule l, and then the joint distribution of all triplets is defined as follows:

p(vO,vH) =
1

Z
exp

0

@
X

l2L

wl

X

g2Gl

{g is true}

1

A =
1

Z
exp

 
X

l2L

wlnl(vO,vH)

!
, (1)

where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [23].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e 2 E and relation r 2 R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:

p(vO,vH) =
Y

(h,r,t)2O[H

Ber(v(h,r,t)|f(xh,xr,xt)), (2)

3

V#: observed facts

V%: unobserved/hidden facts

&': weight of logic rule (
)'(V#, V%): number of true grounds of the logic rule (



Pros and Cons of Markov Logic Networks

• Pros
• Effectively leverage domain knowledge with logic rules
• Handle the uncertainty

• Limitation
• Inference is difficult due to complicated graph structures
• Recall is low since many facts are not covered by any logic rules

9



Knowledge Graph Embeddings

• Learning the entity and relation embeddings for predicting the 
missing facts (e.g., TransE, ComplEx, DisMult, RotatE)
• Defining the joint distribution of all the facts

• Trained by treating V" as positive facts and V# as negative facts
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3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
Due to the high cost of knowledge graph construction, the coverage of knowledge graphs is usually
limited. Therefore, a critical problem on knowledge graphs is to predict the missing facts.

Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of relations, and
O is a set of observed (h, r, t) triplets, the goal is to infer the missing triplets by reasoning with the
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This problem has been extensively studied in both traditional logic rule-based methods and recent
knowledge graph embedding methods. For logic rule-based methods, we mainly focus on one
representative approach, the Markov logic network. Essentially, both types of methods aim to model
the joint distribution of the observed and hidden triplets p(vO,vH). Next, we briefly introduce the
Markov logic network (MLN) [32] and the knowledge graph embedding methods [3, 42, 45].

3.2 Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed and the
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(2) Inverse Rules. A relation rj is an inverse of ri indicates that for two entities x, y, if x has relation
ri with y, then y has relation rj with x. We can represent the rule as 8x, y 2 E,v(x,ri,y) ) v(y,rj ,x).
(3) Symmetric Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation
r with y, then y also has relation r with x. Formally, we have 8x, y 2 E,v(x,r,y) ) v(y,r,x). (4)
Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity pair x, y, if x and y
have relation ri, then they also have relation rj . Formally, we have 8x, y 2 E,v(x,ri,y) ) v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the entity
placeholders in the logic rule with real entities in knowledge graphs. For example, for a subre-
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v(Newton,Live in,UK) and v(Einstein,Born in,German) ) v(Einstein,Live in,German). We see that the former one is
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1
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l2L
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g2Gl

{g is true}

1

A =
1
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exp

 
X

l2L

wlnl(vO,vH)

!
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where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [23].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e 2 E and relation r 2 R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:

p(vO,vH) =
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Ber(v(h,r,t)|f(xh,xr,xt)), (2)
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3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
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true while the latter one is false. To handle such uncertainty of logic rules, Markov logic networks
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where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [23].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e 2 E and relation r 2 R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:
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Pros and Cons

• Pros
• Can be effectively and efficiently trained by SGD
• High recall of missing link prediction with entity and relation embeddings

• Cons
• Hard to leverage domain knowledge (logic rules)

11



Probabilistic Logic Neural Networks for Reasoning
(Qu and Tang, NeurIPS’19. )
• Towards combining Markov Logic Networks and knowledge graph 

embedding
• Leverage logic rules and handling their uncertainty
• Effective and efficient inference

• Define the joint distribution of facts with Markov Logic Network
• Optimization with variational EM
• Parametrize the variational distribution with knowledge graph embedding

methods
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Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning.” To appear in NeurIPS’2019.



pLogicNet

• Define the joint distribution of facts with an MLN

• Learning by maximizing the variational lower-bound of the log-
likelihood of observed facts
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Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update
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words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model
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which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
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where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
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where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update
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• Amortized mean-field variational inference
• Use knowledge graph embedding model to parameterize the variational
distribution
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q✓ to minimize the KL divergence between q✓(vH) and pw(vH |vO). In the M-step, which is known
as the learning procedure, we fix q✓ and update pw to maximize the log-likelihood function of all the
triplets, i.e., Eq✓(vH)[log pw(vO,vH)]. Next, we introduce the details of both steps.

4.2 E-step: Inference Procedure

For inference, we aim to infer the posterior distribution of the hidden variables, i.e., pw(vH |vO). As
exact inference is intractable, we approximate the true posterior distribution with a mean-field [27]
variational distribution q✓(vH), in which each v(h,r,t) is inferred independently for (h, r, t) 2 H . To
further improve inference, we use amortized inference [11, 19], and parameterize q✓(v(h,r,t)) with a
knowledge graph embedding model. Formally, q✓(vH) is formulated as below:

q✓(vH) =
Y

(h,r,t)2H

q✓(v(h,r,t)) =
Y

(h,r,t)2H

Ber(v(h,r,t)|f(xh,xr,xt)), (5)

where Ber stands for the Bernoulli distribution, and f(·, ·, ·) is a scoring function defined on triplets
as introduced in Sec. 3.3. By minimizing the KL divergence between the variational distribution
q✓(vH) and the true posterior distribution pw(vH |vO), the optimal q✓(vH) is given by the fixed-point
condition as below (see appendix for proof):

log q✓(v(h,r,t)) = Eq✓(vMB(h,r,t))[log p(v(h,r,t)|vMB(h,r,t))] + const for all (h, r, t) 2 H, (6)

where MB(h, r, t) is the Markov blanket of (h, r, t), which contains the triplets that appear together
with (h, r, t) in any grounding of the logic rules. For example, from a grounding v(Newton,Born in,UK) )
v(Newton,Live in,UK), we can know both triplets are in the Markov blanket of each other.

Based on the Eq. (6), our goal becomes finding a distribution q✓ that satisfies the condition. However,
Eq. (6) involves the expectation with respect to q✓(vMB(h,r,t)). To simplify the condition, we estimate
the expectation by drawing a sample v̂MB(h,r,t) = {v̂(h0,r0,t0)}(h0,r0,t0)2MB(h,r,t). Specifically, for
each (h0, r0, t0) 2 MB(h, r, t), if it is observed, we set v̂(h0,r0,t0) = 1, and otherwise v̂(h0,r0,t0) ⇠
q✓(v(h0,r0,t0)). In this way, the right side of Eq. (6) is approximated as log pw(v(h,r,t)|v̂MB(h,r,t)),
and thus the optimality condition can be further simplified as q✓(v(h,r,t)) ⇡ pw(v(h,r,t)|v̂MB(h,r,t)).

Intuitively, for each hidden triplet (h, r, t), the knowledge graph embedding model predicts v(h,r,t)

through the entity and relation embeddings (i.e., q✓(v(h,r,t))), while the logic rules make the
prediction by utilizing the triplets connected with (h, r, t) (i.e., pw(v(h,r,t)|v̂MB(h,r,t))). If any
triplet (h0, r0, t0) connected with (h, r, t) is unobserved, we simply fill in v(h0,r0,t0) with a sample
v̂(h0,r0,t0) ⇠ q✓(v(h0,r0,t0)). Then, the simplified optimality condition tells us that for the optimal
knowledge graph embedding model, it should reach a consensus with the logic rules on the distribution
of v(h,r,t) for every (h, r, t), i.e., q✓(v(h,r,t)) ⇡ pw(v(h,r,t)|v̂MB(h,r,t)).

To learn the optimal q✓, we use a method similar to [33]. We start by computing pw(v(h,r,t)|v̂MB(h,r,t))
with the current q✓. Then, we fix the value as target, and update q✓ to minimize the reverse KL
divergence of q✓(v(h,r,t)) and the target p(v(h,r,t)|v̂MB(h,r,t)), leading to the following objective:

O✓,U =
X

(h,r,t)2H

Ep(v(h,r,t)|v̂MB(h,r,t))[log q✓(v(h,r,t))]. (7)

To optimize this objective, we first compute p(v(h,r,t)|v̂MB(h,r,t)) for each hidden triplet (h, r, t).
If the probability of p(v(h,r,t) = 1|v̂MB(h,r,t)) is greater than 0.5, then we treat (h, r, t) as a pos-
itive example and train the knowledge graph embedding model to maximize the log-likelihood
log q✓(v(h,r,t) = 1). Otherwise the triplet is treated as a negative example. In this way, the knowl-
edge captured by logic rules can be effectively distilled into the knowledge graph embedding model.

We can also use the observed triplets in O as positive examples to enhance the knowledge graph
embedding model. Therefore, we also optimize the following objective function:

O✓,L =
X

(h,r,t)2O

log q✓(v(h,r,t) = 1). (8)

By adding Eq. (7) and (8), we obtain the overall objective function for q✓, i.e., O✓ = O✓,U +O✓,L.
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4.3 M-step: Learning Procedure

In the learning procedure, we will fix q✓, and update the weights of logic rules w by maximizing
the log-likelihood function, i.e., Eq✓(vH)[log pw(vO,vH)]. However, directly optimizing the log-
likelihood function can be difficult, as we need to deal with the partition function, i.e., Z in Eq. (3).
Therefore, we follow existing studies [20, 32] and instead optimize the pseudolikelihood function [1]:

`PL(w) , Eq✓(vH)[
X

h,r,t

log pw(v(h,r,t)|vO[H\(h,r,t))] = Eq✓(vH)[
X

h,r,t

log pw(v(h,r,t)|vMB(h,r,t))],

where the equation is derived from the independence property of the Markov logic network in Eq. (3).

We optimize w through the gradient descent algorithm. For each expected conditional distribution
Eq✓(vH)[log pw(v(h,r,t)|vMB(h,r,t))], suppose v(h,r,t) connects with vMB(h,r,t) through a set of rules.
For each of such rules l, the derivative with respect to wl is computed as (see appendix for proof):

Owl
Eq✓(vH)[log pw(v(h,r,t)|vMB(h,r,t))] ' y(h,r,t) � pw(v(h,r,t) = 1|v̂MB(h,r,t)) (9)

where y(h,r,t) = 1 if (h, r, t) is an observed triplet and y(h,r,t) = q✓(v(h,r,t) = 1) if (h, r, t) is a
hidden one. v̂MB(h,r,t) = {v̂(h0,r0,t0)}(h0,r0,t0)2MB(h,r,t) is a sample from q✓. For each (h0, r0, t0) 2
MB(h, r, t), v̂(h0,r0,t0) = 1 if (h0, r0, t0) is observed, and otherwise v̂(h0,r0,t0) ⇠ q✓(v(h0,r0,t0)).

Intuitively, for each observed triplet (h, r, t) 2 O, we seek to maximize pw(v(h,r,t) = 1|v̂MB(h,r,t)).
For each hidden triplet (h, r, t) 2 H , we treat q✓(v(h,r,t) = 1) as target for updating pw(v(h,r,t) =
1|v̂MB(h,r,t)). In this way, the knowledge graph embedding model q✓ essentially provides extra
supervision to benefit learning the weights of logic rules.

4.4 Optimization and Prediction

During training, we iteratively perform the E-step and the M-step until convergence. Note that there
are a huge number of possible hidden triplets (i.e., |E| ⇥ |R| ⇥ |E| � |O|), and handling all of
them is impractical for optimization. Therefore, we only include a small number of triplets in the
hidden set H . Specifically, an unobserved triplet (h, r, t) is added to H if we can find a grounding
[premise] ) [hypothesis], where the hypothesis is (h, r, t) and the premise only contains triplets
in the observed set O. In practice, we can construct H with brute-force search as in [15].

After training, according to the fixed-point condition given in Eq. (6), the posterior distribution
pw(v(h,r,t)|vO) for (h, r, t) 2 H can be characterized by either q✓(v(h,r,t)) or pw(v(h,r,t)|v̂MB(h,r,t))
with v̂MB(h,r,t) ⇠ q✓(vMB(h,r,t)). Although we try to encourage the consensus of pw and q✓ during
training, they may still give different predictions as different information is used. Therefore, we use
both of them for prediction, and we approximate the true posterior distribution pw(v(h,r,t)|vO) as:

pw(v(h,r,t)|vO) ⇡
1

2

�
q✓(v(h,r,t)) + pw(v(h,r,t)|v̂MB(h,r,t))

�
. (10)

In practice, we also expect to infer the plausibility of the triplets outside H . For each of such triplets
(h, r, t), we can still compute q✓(v(h,r,t)) through the learned embeddings, but we cannot make
predictions with the logic rules, so we simply replace pw(v(h,r,t) = 1|v̂MB(h,r,t)) with 0.5 in Eq. 10.

5 Experiment

5.1 Experiment Settings

Datasets. In experiments, we evaluate the pLogicNet on four benchmark datasets. The FB15k [3]
and FB15k-237 [40] datasets are constructed from Freebase [2]. WN18 [3] and WN18RR [8] are
constructed from WordNet [22]. The detailed statistics of the datasets are summarized in appendix.

Evaluation Metrics. We compare different methods on the task of knowledge graph reasoning. For
each test triplet, we mask the head or the tail entity, and let each compared method predict the masked
entity. Following existing studies [3, 45], we use the filtered setting during evaluation. The Mean
Rank (MR), Mean Reciprocal Rank (MRR) and Hit@K (H@K) are treated as the evaluation metrics.
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(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4
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Compared Algorithms. We compare with both the knowledge graph embedding methods and rule-
based methods. For the knowledge graph embedding methods, we choose five representative methods
to compare with, including TransE [3], DistMult [45], HolE [26], ComplEx [41] and ConvE [8]. For
the rule-based methods, we compare with the Markov logic network (MLN) [32] and the Bayesian
Logic Programming (BLP) method [7], which model logic rules with Markov networks and Bayesian
networks respectively. Besides, we also compare with RUGE [15] and NNE-AER [9], which are
hybrid methods that combine knowledge graph embedding and logic rules. As only the results on the
FB15k dataset are reported in the RUGE paper, we only compare with RUGE on that dataset. For
our approach, we consider two variants, where pLogicNet uses only q✓ to infer the plausibility of
unobserved triplets during evaluation, while pLogicNet⇤ uses both q✓ and pw through Eq. (10).

Experimental Setup of pLogicNet. To generate the candidate rules in the pLogicNet, we search
for all the possible composition rules, inverse rules, symmetric rules and subrelations rules from the
observed triplets, which is similar to [10, 15]. Then, we compute the empirical precision of each
rule, i.e. pl =

|Sl\O|
|Sl| , where Sl is the set of triplets extracted by the rule l and O is the set of the

observed triplets. We only keep the rules whose empirical precision is more than 0.1. TransE [3] is
used as the knowledge graph embedding model to parameterize q✓ by default, and we use the same
hyperparameters as in [37] during training, which can be found in appendix. We update the weights
of logic rules with gradient descent, and the learning rate is fixed as 0.0001.

5.2 Results

5.2.1 Comparing pLogicNet with Other Methods

Table 1: Results of reasoning on the FB15k and WN18 datasets. The results of the KGE and the
Hybrid methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm FB15k WN18
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [3] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [17] 42 0.798 - - 89.3 655 0.797 - - 94.6

HolE [26] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [41] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7

ConvE [8] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6

Rule-based BLP [7] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0
MLN [32] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9

Hybrid RUGE [15] - 0.768 70.3 81.5 86.5 - - - - -
NNE-AER [9] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8

Ours pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94.4 95.7
pLogicNet⇤ 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8

Table 2: Results of reasoning on the FB15k-237 and WN18RR datasets. The results of the KGE
methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE
TransE [3] 181 0.326 22.9 36.3 52.1 3410 0.223 1.3 40.1 53.1

DistMult [17] 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx [41] 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ConvE [8] 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

Rule-based BLP [7] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8
MLN [32] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1

Ours pLogicNet 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet⇤ 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7

The main results on the four datasets are presented in Tab. 1 and 2. We can see that the pLogicNet
significantly outperforms the rule-based methods, as pLogicNet uses a knowledge graph embedding
model to improve inference. pLogicNet also outperforms all the knowledge graph embedding
methods in most cases, where the improvement comes from the capability of exploring the knowledge
captured by the logic rules. Moreover, our approach is superior to both hybrid methods (RUGE and
NNE-AER) under most metrics, as it can handle the uncertainty of logic rules in a principled way.

7

• Datasets: benchmark knowledge graphs
• FB15K, WN18, FB15K-237, WN18-RR

• Logic rules:
• Composition rules (e.g., Father of Father is GrandFather)
• Inverse rules (e.g., Husband and Wife)
• Symmetric rules (e.g., Similar)
• Subrelation rules (e.g., Man => Person)



Semi-supervised Object Classification

• Given G= (V, E, !")
• # = #%⋃#': objects/nodes
• E : edges
• !": object features

• Give some labeled objects #%, we want to infer the labels of the rest 
of objects #'
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GMNN: Graph Markov Neural Networks
(Qu, Bengio, and Tang, ICML’19)
• Combining conditional random fields and graph neural networks
• Learning effective node representations
• Modeling the label dependencies of nodes

• Model the joint distribution of object labels !" conditioned on object
attributes #", i.e., p%(!"|#") with CRFs
• Optimization with Pseudolikelihood Variational-EM

18Meng Qu, Yoshua Bengio, Jian Tang. “GMNN: Graph Markov Neural Networks”. In ICML’19.

GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate



Overall Optimization Procedure
• Two Graph Neural Networks Collaborate with each other
• !": learning network, modeling the label dependency
• #$: inference network, learning the object representations

• #$ infer the labels of unlabeled objects trained with supervision from
!" and labeled objects
• !" is trained with a fully labeled graph, where the unlabeled objects

are labeled by #$
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Take Away

• Relational reasoning is important to a variety of applications
• Node classification, link prediction on knowledge graphs, question answering

• Towards combining two learning frameworks
• Statistical Relational Learning
• Graph Representation Learning

• Looking forward
• Combining deep learning and symbolic reasoning systems
• Incorporating common sense knowledge, handling uncertainty, and maybe
automatically learn the logic rules.
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Questions?
Email: jian.tang@hec.ca
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Results on FB15k-237 and WN18RR
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Compared Algorithms. We compare with both the knowledge graph embedding methods and rule-
based methods. For the knowledge graph embedding methods, we choose five representative methods
to compare with, including TransE [3], DistMult [45], HolE [26], ComplEx [41] and ConvE [8]. For
the rule-based methods, we compare with the Markov logic network (MLN) [32] and the Bayesian
Logic Programming (BLP) method [7], which model logic rules with Markov networks and Bayesian
networks respectively. Besides, we also compare with RUGE [15] and NNE-AER [9], which are
hybrid methods that combine knowledge graph embedding and logic rules. As only the results on the
FB15k dataset are reported in the RUGE paper, we only compare with RUGE on that dataset. For
our approach, we consider two variants, where pLogicNet uses only q✓ to infer the plausibility of
unobserved triplets during evaluation, while pLogicNet⇤ uses both q✓ and pw through Eq. (10).

Experimental Setup of pLogicNet. To generate the candidate rules in the pLogicNet, we search
for all the possible composition rules, inverse rules, symmetric rules and subrelations rules from the
observed triplets, which is similar to [10, 15]. Then, we compute the empirical precision of each
rule, i.e. pl =

|Sl\O|
|Sl| , where Sl is the set of triplets extracted by the rule l and O is the set of the

observed triplets. We only keep the rules whose empirical precision is more than 0.1. TransE [3] is
used as the knowledge graph embedding model to parameterize q✓ by default, and we use the same
hyperparameters as in [37] during training, which can be found in appendix. We update the weights
of logic rules with gradient descent, and the learning rate is fixed as 0.0001.

5.2 Results

5.2.1 Comparing pLogicNet with Other Methods

Table 1: Results of reasoning on the FB15k and WN18 datasets. The results of the KGE and the
Hybrid methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm FB15k WN18
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [3] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [17] 42 0.798 - - 89.3 655 0.797 - - 94.6

HolE [26] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [41] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7

ConvE [8] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6

Rule-based BLP [7] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0
MLN [32] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9

Hybrid RUGE [15] - 0.768 70.3 81.5 86.5 - - - - -
NNE-AER [9] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8

Ours pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94.4 95.7
pLogicNet⇤ 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8

Table 2: Results of reasoning on the FB15k-237 and WN18RR datasets. The results of the KGE
methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE
TransE [3] 181 0.326 22.9 36.3 52.1 3410 0.223 1.3 40.1 53.1

DistMult [17] 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx [41] 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ConvE [8] 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

Rule-based BLP [7] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8
MLN [32] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1

Ours pLogicNet 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet⇤ 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7

The main results on the four datasets are presented in Tab. 1 and 2. We can see that the pLogicNet
significantly outperforms the rule-based methods, as pLogicNet uses a knowledge graph embedding
model to improve inference. pLogicNet also outperforms all the knowledge graph embedding
methods in most cases, where the improvement comes from the capability of exploring the knowledge
captured by the logic rules. Moreover, our approach is superior to both hybrid methods (RUGE and
NNE-AER) under most metrics, as it can handle the uncertainty of logic rules in a principled way.
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GMNN: Graph Markov Neural Networks

• Model the joint distribution of object labels !" conditioned on object
attributes #", i.e., p%(!"|#")
• Learning the model parameters ) by maximizing the lower-bound of
log-likelihood of the observed data, log p%(!-|#")
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GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate



Optimization with Pseudolikelihood Variational-
EM
• E-step: fix p" and update the variational distribution q$(&'|)*) to
approximate the true posterior distribution p" &'|&,, )* .
• M-step: fix q$ and update p" to maximize the lower bound

• Directly optimize the joint likelihood is difficult due to the partition
function in p", instead we optimize the pseudolikelihood function
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GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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p�(yn|ŷNB(n),xV ). Then the value of p�(yn|ŷNB(n),xV )
is fixed as target, and we update ✓ to minimize the re-
verse KL divergence between q✓(yn|xV ) and the target
p�(yn|ŷNB(n),xV ), yielding the objective function below:

O✓,U =
X

n2U

Ep�(yn|ŷNB(n),xV )[log q✓(yn|xV )]. (11)

Besides, we notice that q✓ can be also trained by predicting
the labels for the labeled objects. Therefore, we also let q✓
maximize the following supervised objective function:

O✓,L =
X

n2L

log q✓(yn|xV ). (12)

Here, yn is the ground-truth label of n. By adding Eq. (11)
and (12), we obtain the overall objective for optimizing ✓:

O✓ = O✓,U +O✓,L. (13)

4.3. Learning

In the M-step, we seek to learn the parameter �. More specif-
ically, we will fix q✓ and further update p� to maximize
Eq. (5). With the objective function, we notice that only
the conditional distribution p�(yn|yNB(n),xV ) is required
for p� in both the inference and learning steps (Eq. (11)
and (5)). Therefore, instead of defining the joint distribu-
tion of object labels p�(yV |xV ) by specifying the potential
function, we can simply focus on modeling the conditional
distribution. Here, we parameterize the conditional distri-
bution p�(yn|yNB(n),xV ) with another non-linear graph
neural network model (GNN) because of its effectiveness:

p�(yn|yNB(n),xV ) = Cat(yn|softmax(W�h�,n)). (14)

Here, the distribution of yn is characterized by a softmax
classifier, which takes the object representation h�,n learned
by a GNN model as features, and we denote the GNN
as GNN�. When learning the object representation h�,n,
GNN� treats all the labels yNB(n) surrounding the object
n as features. Therefore, GNN� essentially models local
dependencies of object labels. With the above formulation,
we no longer require any hand-crafted feature functions.

The framework is related to the label propagation meth-
ods (Zhu et al., 2003; Zhou et al., 2004), which also update
each object label by combining the surrounding labels. How-
ever, these methods propagate labels in a fixed and linear
way, whereas GNN� is in a learnable and non-linear way.

One notable thing is that when defining p�(yn|yNB(n),xV ),
GNN� only uses the object labels yNB(n) surrounding the
object n as features, but GNN� is flexible to incorporate
other features. For example, we can follow existing SRL
methods, and take both the surrounding object labels yNB(n)
and surrounding attributes xNB(n) as features in GNN�. We
will discuss this variant in our experiment (see Sec. 6.4).

Algorithm 1 Optimization Algorithm

Input: A graph G, some labeled objects (L,yL).
Output: Object labels yU for unlabeled objects U .
Pre-train q✓ with yL according to Eq. (12).
while not converge do

� M-Step: Learning Procedure

Annotate unlabeled objects with q✓.
Denote the sampled labels as ŷU .
Set ŷV = (yL, ŷU ) and update p� with Eq. (15).
� E-Step: Inference Procedure

Annotate unlabeled objects with p� and ŷV .
Denote the predicted label distribution as p�(yU ).
Update q✓ with Eq. (11), (12) based on p�(yU ),yL.

end while

Classify each unlabeled object n based on q✓(yn|xV ).

Another thing is that based on the overall formulation of
p�, i.e., Eq. (1), each object label yn should only depend on
its adjacent object labels yNB(n) and object attributes xV ,
which implies GNN� should not have more than one mes-
sage passing layer. However, a common practice in the liter-
ature of graph neural networks is to use multiple message
passing layers during training, which can effectively model
the long-range dependency between the objects. Therefore,
we also explore using multiple message passing layers for
modeling the long-range dependency between object labels.

When optimizing p� to maximize Eq. (5), we estimate the
expectation in Eq. (5) by drawing a sample from q✓(yU |xV ).
More specifically, if n is an unlabeled object, then we
sample ŷn ⇠ q✓(yn|xV ), and otherwise we set ŷn as the
ground-truth label. Therefore, the parameter � can be op-
timized by maximizing the following objective function:

O� =
X

n2V

log p�(ŷn|ŷNB(n),xV ). (15)

4.4. Optimization

To optimize our approach, we first pre-train the inference
model q✓ with the labeled objects. Then we alternatively
optimize p� and q✓ until convergence. Afterwards, both
p� and q✓ can be employed to infer the labels of unlabeled
objects. In practice, we find that q✓ consistently outperforms
p�, and thus we use q✓ to infer object labels by default. We
summarize the detailed optimization algorithm in Alg. 1.

Fig. 1 presents an illustration of the framework. For the cen-
tral object, q✓ uses the attributes of its surrounding objects
to learn its representation, and further predicts the label. By
contrast, p� utilizes the labels of the surrounding objects
as features. If a neighbor is unlabeled, we simply use a
label sampled from q✓ instead. In the E-step, p� predicts the
label for the central object, which is then treated as target to



Overall Optimization Procedure
• Two Graph Neural Networks Collaborate with each other
• !": learning network, modeling the label dependency
• #$: inference network, learning the object representations

• #$ infer the labels of unlabeled objects trained with supervision from
!" and labeled objects
• !" is trained with a fully labeled graph, where the unlabeled objects

are labeled by #$
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