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Relational Data/Graphs are Ubiquitous

* Graphs: a general and flexible data structure to encode the relations
between objects

Protein-protein
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Social Graph Road Graph Citation Graph



Relational Prediction and Reasoning
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Visual relational reasoning
(Hudson et al. 2019)
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Statistical Relational Learning

* Probabilistic graphical models for relational data
* Markov Networks (Ross et al. 1980)
* Conditional Random Fields (Lafferty et al. 2001)
* Markov Logic Networks (Richardson and Domingos, 2006)

* Pros:
* Captures uncertainty and domain knowledge .
* Collective inference plyvixyv) = Z00) 1T ©iiiyixv)
(1,j)EE
* Cons:

Figure: Conditional Random Fields

* Limited model capacity
* Inference is difficult



Graph Representation Learning

* Graph Neural Networks

* Graph convolutional Networks (Kipf et al. 2016)
* Graph attention networks (Velickovi¢ et al. 2017)
* Neural message passing (Gilmer et al. 2017)

* Node Embedding and Knowledge Graph Embedding
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Link Prediction on Knowledge Graphs

* A set of facts KG = {(h,7,t)} represented as triplets
* (Bill_Gates, Co_Founder, Microsoft)

* A variety of applications
* Question answering
e Search
* Recommender Systems
* Natural language understanding

* A fundamental problem: predicting the missing facts by reasoning
with existing facts



Traditional Symbolic Logic-Rule based approaches

* Expert systems: hard logic rules
* E.g., VX,Y,Husband(X,Y) => Wife(Y, X)
* VX,Y, Live(X, Y) => Nationality(X, Y)

* Problematic as logic rules can be imperfect or contradictory

* We must handle the uncertainty of logic rules



Markov Logic Networks
(Richardson and Domingos, 2006)

* Combines first-order logic and probabilistic graphical models

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)
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Pros and Cons of Markov Logic Networks

* Pros
* Effectively leverage domain knowledge with logic rules
* Handle the uncertainty
* Limitation
* Inference is difficult due to complicated graph structures
* Recall is low since many facts are not covered by any logic rules



Knowledge Graph Embeddings

* Learning the entity and relation embeddings for predicting the
missing facts (e.g., Transk, ComplEx, DisMult, RotatE)

* Defining the joint distribution of all the facts

p(VOva) — H Ber(v(h,r,t)‘f(xhaX?“axt))a
(h,r,t)eOUH

An example:

Ber(vp r) [ f (Xn, Xr, X¢)) = o(y — ||Xh + X, — X¢| |) o is the sigmoid function, y is a fixed margin

* Trained by treating V) as positive facts and Vy as negative facts
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Pros and Cons

* Pros
e Can be effectively and efficiently trained by SGD
* High recall of missing link prediction with entity and relation embeddings

* Cons
* Hard to leverage domain knowledge (logic rules)
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Probabilistic Logic Neural Networks for Reasoning
(Qu and Tang, NeurlPS’19.)

* Towards combining Markov Logic Networks and knowledge graph
embedding
* Leverage logic rules and handling their uncertainty
* Effective and efficient inference

* Define the joint distribution of facts with Markov Logic Network

* Optimization with variational EM

* Parametrize the variational distribution with knowledge graph embedding
methods

Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning.” To appear in NeurlPS’2019.
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plLogicNet

* Define the joint distribution of facts with an MLLN

(Alan Turing, Born in, London)

Born in A\ City of = Nationality 1.5

v

(London, City of, UK) (Alan Turing, Politician of, UK)

* Learning by maximizing the variational lower-bound of the log-
likelihood of observed facts

log pw(vo) = L(q9,Pw) = Eqy(vi)l0g pw(Vo, ve) —logqe(ve)]
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Inference

* Amortized mean-field variational inference

* Use knowledge graph embedding model to parameterize the variational
distribution

qo(Vi) = H 46 (V(h,r,t)) = H Ber(vp,r)|f (Xn, %r, X¢)),

(h,r,t)eH (h,r,t)eH
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Learning

* Optimize pseudo-likelihood function
* Update the weights of logic rules

tpp(w) £ By v 108 Pu (Vi) [Vour ()] = Egovi [ > 108 Puw(Vinr ) VB () )]
h,r,t h,rt
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Performance of Link Prediction

* Datasets: benchmark knowledge graphs
* FB15K, WN18, FB15K-237, WN18-RR

* Logicrules:
* Composition rules (e.g., Father of Father is GrandFather)

* Inverse rules (e.g., Husband and Wife)

* Symmetric rules (e.g., Similar)

* Subrelation rules (e.g., Man => Person)

Category Algorithm FB15k WN18
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TransE [3] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [17] 42 0.798 - - 89.3 655 0.797 - - 94.6
KGE HolE [26] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [41] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7
ConvE [8] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6
Rule-based BLP [7] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0
MLN [32] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9
Hybrid RUGE [15] - 0.768 70.3 81.5 86.5 - - - - -
NNE-AER [9] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8
Ours pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94.4 95.7
pLogicNet* 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8
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Semi-supervised Object Classification

* Given G= (V, E, Xvy)
« V =V, UVy: objects/nodes
* E: edges
* Xy: object features

O Object labels

. Object features

* Give some labeled objects V;, we want to infer the labels of the rest
of objects I/,
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GMNN: Graph Markov Neural Networks
(Qu, Bengio, and Tang, ICML'19)

e Combining conditional random fields and graph neural networks
* Learning effective node representations
* Modeling the label dependencies of nodes

* Model the joint distribution of object labels y;, conditioned on object
attributes Xy, i.e., py (¥y |Xy) with CRFs

e Optimization with Pseudolikelihood Variational-EM

log po(yrL|xv) >
Eqp(vo1x) 108 Pe (YL, YU |xv) — log go(yu|xv)]

Meng Qu, Yoshua Bengio, Jian Tang. “GMNN: Graph Markov Neural Networks”. In ICML'19. 18



Overall Optimization Procedure

* Two Graph Neural Networks Collaborate with each other
* Pg: learning network, modeling the label dependency
* qg: inference network, learning the object representations

* g infer the labels of unlabeled objects trained with supervision from
Py and labeled objects

* Py is trained with a fully labeled graph, where the unlabeled objects
are labeled by gg

Q Object labels

. Object features
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Take Away

* Relational reasoning is important to a variety of applications
* Node classification, link prediction on knowledge graphs, question answering

* Towards combining two learning frameworks
* Statistical Relational Learning
* Graph Representation Learning

* Looking forward

* Combining deep learning and symbolic reasoning systems

* Incorporating common sense knowledge, handling uncertainty, and maybe
automatically learn the logic rules.



Questions?
Email: jian.tang@hec.ca
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Results on FB15k-237 and WN18RR

Category Algorithm FB15k-237 WNISRR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TransE [3] 181 0.326 22.9 36.3 52.1 3410 0.223 1.3 40.1 53.1
KGE DistMult [17] 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx [41] 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51
ConvE [8] 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52
Rule-based BLP [7] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8
MLN [32] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1
Ours pLogicNet 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet* 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7
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GMNN: Graph Markov Neural Networks

* Model the joint distribution of object labels y;, conditioned on object
attributes Xy, i.e., py (Yv [Xy)

* Learning the model parameters ¢ by maximizing the lower-bound of
log-likelihood of the observed data, log pg (¥, [Xy )

log po(yr|xv) >
Eqo(vo1xv) 108 Do (YL, YU |xv) — log go(yu|xv )]

23



Optimization with Pseudolikelihood Variational-
EM

* E-step: fix pg and update the variational distribution q4 (yy [Xy) to
approximate the true posterior distribution py (yy |y., Xy ).

* M-step: fix g and update p4 to maximize the lower bound

€(¢) - EQ@ (Yyulxv) [logp¢(yL, yU|XV)]

* Directly optimize the joint likelihood is difficult due to the partition
function in Py, instead we optimize the pseudolikelihood function

EPL(Qb) é qu(ylev) [Z Inggb(yn‘YV\n, XV)]
neV

=K, (yuxv) [Z log Py (Ynlynsm), Xv )]

nev
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Inference/E-step: approximate py (Yy YL, Xy )

* Approximate it with variational distribution q4 (yy |Xy ). Specifically
we use mean-field method:

qo(yulxv) = l qo(Yn|xv)
nelU

* We parametrize each variational distribution with a Graph Neural
Network

qo(Yn|xv) = Cat(y,|softmax(Wyhy ,,))

Object representations learned by GNN
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Learning/M-step:

* The log-pseudo likelihood:

lpr(9) 2 Eoyiyuixn)[ Y 108 Do (Ynlyvin, Xv)]
neV

— ]qu (yulxv) [Z logqu(Yn‘YNB(n)? XV)]

nev
* According to the inference, only the P (YnlYNBM) Xv) is required

* Parametrize pd)(YﬂlYNB(n):XV) with another GCN

Po(Yn|YNB(n), Xv) = Cat(yy[softmax(Wyhy )
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Overall Optimization Procedure

* Two Graph Neural Networks Collaborate with each other
* Pg: learning network, modeling the label dependency
* qg: inference network, learning the object representations

* g infer the labels of unlabeled objects trained with supervision from
Py and labeled objects

* Py is trained with a fully labeled graph, where the unlabeled objects
are labeled by gg

Q Object labels

. Object features
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