
Neural and Symbolic Logical
Reasoning on Knowledge Graphs

Jian Tang 
Mila-Quebec AI Institute

CIFAR AI Chair, HEC Montreal
Homepage: www.jian-tang.com

Acknowledgements: Meng Qu, Yoshua Bengio, Zhiqing Sun, Zhaocheng Zhu, Junkun Chen, Louis-Pascal Xhonneux

http://www.jian-tang.com/


Knowledge Graphs

• Knowledge graphs are heterogeneous graphs
• Multiple types of relations

• A set of facts represented as triplets
• (head entity, relation, tail entity)



Recommendation in E-commerce

• Suggest relevant items to users

RippleNet: Propagating User Preferences on the Knowledge
Graph for Recommender Systems

Hongwei Wang1,2, Fuzheng Zhang3, Jialin Wang4, Miao Zhao4, Wenjie Li4, Xing Xie2, Minyi Guo1∗
1Shanghai Jiao Tong University, wanghongwei55@gmail.com, guo-my@cs.sjtu.edu.cn

2Microsoft Research Asia, xingx@microsoft.com, 3Meituan AI Lab, zhangfuzheng@meituan.com
4The Hong Kong Polytechnic University, {csjlwang, csmiaozhao, cswjli}@comp.polyu.edu.hk

ABSTRACT
To address the sparsity and cold start problem of collaborative �lter-
ing, researchers usually make use of side information, such as social
networks or item attributes, to improve recommendation perfor-
mance. This paper considers the knowledge graph as the source of
side information. To address the limitations of existing embedding-
based and path-based methods for knowledge-graph-aware recom-
mendation, we propose RippleNet, an end-to-end framework that
naturally incorporates the knowledge graph into recommender
systems. Similar to actual ripples propagating on the water, Rip-
pleNet stimulates the propagation of user preferences over the set
of knowledge entities by automatically and iteratively extending a
user’s potential interests along links in the knowledge graph. The
multiple "ripples" activated by a user’s historically clicked items
are thus superposed to form the preference distribution of the user
with respect to a candidate item, which could be used for predict-
ing the �nal clicking probability. Through extensive experiments
on real-world datasets, we demonstrate that RippleNet achieves
substantial gains in a variety of scenarios, including movie, book
and news recommendation, over several state-of-the-art baselines.

KEYWORDS
Recommender systems; knowledge graph; preference propagation

ACM Reference Format:
Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing
Xie, and Minyi Guo. 2018. RippleNet: Propagating User Preferences on the
Knowledge Graph for Recommender Systems. In The 27th ACM International
Conference on Information and Knowledge Management (CIKM ’18), October
22–26, 2018, Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3269206.3271739

1 INTRODUCTION
The explosive growth of online content and services has provided
overwhelming choices for users, such as news, movies, music,
restaurants, and books. Recommender systems (RS) intend to ad-
dress the information explosion by �nding a small set of items for
∗M.Guo is the corresponding author. This workwas partially sponsored by the National
Basic Research 973 Program of China under Grant 2015CB352403.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6014-2/18/10.
https://doi.org/10.1145/3269206.3271739

Cast Away

The Green Mile

Tom Hanks

Robert 
Zemeckis

Adventure

Back to 
the Future

Steven 
Spielberg

genre

starred

genre

Forrest Gump

Raiders of 
the Lost Ark

Interstellar

include

include

star

starred

directed

direct

direct

style

collaborate

Movies the user 
have watched Knowledge Graph Movies the user 

may also like

Figure 1: Illustration of knowledge graph enhanced movie
recommender systems. The knowledge graph provides fruit-
ful facts and connections among items, which are useful for
improving precision, diversity, and explainability of recom-
mended results.

users to meet their personalized interests. Among recommenda-
tion strategies, collaborative �ltering (CF), which considers users’
historical interactions and makes recommendations based on their
potential common preferences, has achieved great success [12].
However, CF-based methods usually su�er from the sparsity of
user-item interactions and the cold start problem. To address these
limitations, researchers have proposed incorporating side informa-
tion into CF, such as social networks [9], user/item attributes [32],
images [43] and contexts [25].

Among various types of side information, knowledge graph (KG)
usually contains much more fruitful facts and connections about
items. A KG is a type of directed heterogeneous graph in which
nodes correspond to entities and edges correspond to relations. Re-
cently, researchers have proposed several academic KGs, such as
NELL1, DBpedia2, and commercial KGs, such as Google Knowledge
Graph3 and Microsoft Satori4. These knowledge graphs are suc-
cessfully applied in many applications such as KG completion [14],
question answering [7], word embedding [40], and text classi�ca-
tion [34].

Inspired by the success of applying KG in a wide variety of tasks,
researchers also tried to utilize KG to improve the performance of
recommender systems. As shown in Figure 1, KG can bene�t the
recommendation from three aspects: (1) KG introduces semantic
relatedness among items, which can help �nd their latent connec-
tions and improve the precision of recommended items; (2) KG

1http://rtw.ml.cmu.edu/rtw/
2http://wiki.dbpedia.org/
3https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
4https://searchengineland.com/library/bing/bing-satori

ar
X

iv
:1

80
3.

03
46

7v
4 

 [c
s.I

R
]  

25
 A

ug
 2

01
8

Figure from Wang et al. 2018



Question Answering

Question: “What are all the country capitals in Africa?”



Drug Repurposing

• Predicting effective (approved)
drugs given a disease

Figure from Zeng et al. 2019

Drug-Disease24 million research articles

Knowledge of drugs

Gene-Disease

Drug-Gene Gene-Gene

treatment/therapy (including 
investigational)
inhibits cell growth

alleviates, reduces
role in disease pathogenesis
(disease progression) biomarkers

…

causal mutations 
mutations affecting disease course 
drug targets

biomarkers (diagnostic) 
overexpression in disease 
improper regulation linked to disease

binding, ligand (esp. receptors)
increases expression
decreases expression

metabolism, pharmacokinetics inhibits
antagonism, blocking
agonism, activation

binding, ligand (esp. receptors) 
enhances response 
activates, stimulates

same protein or complex 
regulation 
production by cell population

39 types of relations and
over 15 million edges

…
……

RotatE on knowledge graph

…

representation learning

head

relation

tail

Element-wise product

COVID-19

Drugs (37,112)

Drug properties (11,289)

Genes (89,159)

HCoV-related genes (120)head relation tail

score | h r t | 2

2

activates
increases

expression 

blo
ck

in
g

inhibits
growth

ATC

in
hi

bi
ts

alleviates, reduces

biomarkers

(diagnostic)

binding, ligand inhibits

drug-drug interaction

treatm
ent/

therapy

targets

ro
le in

path
ogenesis

causal

m
utations

…

top candidates for HCoV-related genes

blocking

in
hi

bi
tin

g

binding

ac
tiv

at
in

g

in
hi

bi
tin

g

inhibiting

Drug-induced transcriptome

HCoV-induced transcriptome/proteome

HCoV-induced
gene profile

Drug-induced
gene profile

Enrichment analysis

00.70.70.10.80.10.70.70.60.80.90.60.300.1

0.70.70.50.10.900.20.90.90.30.40.40.80.60.1
0.410.80.30.40.60.50.20.90.70.70.30.90.71

0.80.10.20.40.30.50.210.80.60.30.90.20.50.4

0.70.60.20.30.90.310.60.30.40.70.80.30.11

0.80.10.50.10.30.50.10.30.50.30.80.40.10.30.3

0.20.80.300.20.70.60.30.70.80.90.60.10.60.6

0.400.20.800.40.70.50.90.70.210.70.70.5

0.70.20.40.50.500.90.90.20.40.200.30.80.3

0.60.70.20.30.80.30.20.60.90.80.90.10.40.30.7

0.10.70.60.70.30.60.30.50.40.60.70.50.90.70.4 0.20.10.30.80.80.30.40.60.30.90.10.30.80.40.3

0.20.80.80.50.40.30.50.80.80.500.50.50.40.1

0.30.30.30.50.80.90.30.60.20.200.60.10.80.5

00.60.10.60.20.90.90.900.60.10.50.70.10.7

Figure 1



Information Retrieval
• Knowledge graphs are used to understand the meanings of query terms

and identify documents that match the meanings

Figure from http://www.cs.cmu.edu/~callan/Projects/IIS-1422676/



Reasoning on Knowledge Graphs

• Knowledge graphs are usually incomplete. Many facts are missing
• A fundamental task: predicting missing links (or facts) by reasoning

on existing facts
• The Key Idea: leverage logic rules for reasoning on knowledge graphs 

implicitly or explicitly
• Example:

Barack_Obama BornIn United_States

Barack_Obama Nationality American

Parents	of	Parents	are	Grandparents



Reasoning in Continuous Space

• Knowledge graph embedding methods
• Map entities and relations into continuous space, and reasoning in the

continuous spaces
• TransE, TransH, TransR, ComplEx, RotatE, ….

TransR RotatETransE



Reasoning in Symbolic Space

• Symbolic logical rule based methods
• Logic programming (e.g., Prolog)
• Markov Logic Network
• ….

Markov Logic NetworksProlog



Neural-Symbolic Reasoning

• Reasoning in both continuous and symbolic space
• pLogicNet (Qu and Tang, 2019)
• ExpressGNN (Zhang et al. 2019)

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

pLogicNet

Published as a conference paper at ICLR 2020

the true posterior distribution. A recent concurrent work Qu & Tang (2019) uses a flattened embedding
table as the entity representation to model the posterior. However, such simple posterior model is
not able to capture the structure knowledge encoded in the knowledge graph. We employ graph
neural networks with tunable embeddings to design our inference network. We also investigate the
expressive power of GNN from theoretical perspective, which justifies our design.

Our inference network, named ExpressGNN, consists of three parts: the first part is a vanilla
graph neural network (GNN), the second part uses tunable embeddings, and the third part uses the
embeddings to define the variational posterior. For simplicity, we assume that each predicate has two
arguments (i.e., consider only r(c, c0)). We design each part as follows:

• We build a GNN on the knowledge graph GK, which is much smaller than the ground graph of
MLN (see comparison in Fig. 2). The computational graph of the GNN is given in Algorithm 1.
The GNN parameters ✓1 and ✓2 are shared across the entire graph and independent of the number
of entities. Therefore, the GNN is a compact model with O(d2) parameters given d dimensional
embeddings, µc 2 Rd.

• For each entity in the knowledge graph, we augment its GNN embedding with a tunable embedding
!c 2 Rk as µ̂c = [µc,!c]. The tunable embeddings increase the expressiveness of the model. As
there are M entities, the number of parameters in tunable embeddings is O(kM).

• We use the augmented embeddings of c1 and c2 to define the variational posterior. Specifically,
Q✓(r(c1, c2)) = �(MLP3(µ̂c1 , µ̂c2 , r;✓3)), where �(·) = 1

1+exp(�·) . The number of parameters
in ✓3 is O(d+ k).

Algorithm 1: GNN()

Initialize entity node: µ(0)
c = µ0, 8c 2 C

for t = 0 to T � 1 do
. Compute message 8r(c, c0) 2 O
m

(t)
c0!c = MLP1(µ

(t)
c0 , r;✓1)

. Aggregate message 8c 2 C
m

(t+1)
c = AGG({m(t)

c0!c}c0:r(c,c0)2O)
. Update embedding 8c 2 C
µ
(t+1)
c = MLP2(µ

(t)
c ,m

(t+1)
c ;✓2)

return embeddings {µ(T )
c }

In summary, ExpressGNN can be viewed as a two-level
encoding of the entities: the compact GNN assigns
similar embeddings to similar entities in the knowl-
edge graph, while the expressive tunable embeddings
provide additional model capacity to encode entity-
specific information beyond graph structures. The over-
all number of trainable parameters in ExpressGNN is
O(d2 + kM). By tuning the embedding size d and k,
ExpressGNN can trade-off between the model compact-

ness and expressiveness. For large-scale problems with
a large number of entities (M is large), ExpressGNN
can save a lot of parameters by reducing k.

5.1 EXPRESSIVE POWER OF GNN AS INFERENCE NETWORK

The combination of GNN and tunable embeddings makes the model sufficiently expressive to
approximate the true posterior distributions. Here we provide theoretical analysis on the expressive
power of GNN in the mean-field inference problem, and discuss the benefit of combining GNN and
tunable embeddings in ExpressGNN.

Recent studies (Shervashidze et al., 2011; Xu et al., 2018) show that the vanilla GNN embeddings can
represent the results of graph coloring, but fail to represent the results of the more strict graph isomor-
phism check, i.e., GNN produces the same embedding for some nodes that should be distinguished.
We first demonstrate this problem by a simple example:

L(A,E)
=?

!(A,E) !(B,E)

L(B,E)
=?

F(A,E)
=1

F(B,E)
=0

F(A,E)
=1

F(B,F)
=1

F(B,E)
=0

F(A,F)
=0

A "#
B "$

E "%
F "&

Figure 3: Bottom: A knowledge
base with 0-1-0-1 loop. Top: MLN.

Example. Fig. 3 involves four entities (A, B, E, F), two predi-
cates (Friend: F(·, ·), Like: L(·, ·)), and one formula (F(c, c0) )
L(c, c0)). In this example, MLN variables have different posteri-
ors, but GNN embeddings result in the same posterior represen-
tation. More specifically,

• Entity A and B have opposite relations with E, i.e., F(A,E) =
1 versus F(B,E) = 0 in the knowledge graph, but running
GNN on the knowledge graph will always produce the same
embeddings for A and B, i.e., µA = µB .

6

ExpressGNN



Logical Rule Induction/Learning

• Logical rules are usually not available, how to infer logical rules from
knowledge graphs?
• Inductive logic programming
• Neural logic programming



Roadmap

• Part I: Reasoning in Continuous Space

• Part II: Symbolic Logic Reasoning

• Part III: Neural-Symbolic Logic Reasoning

• Part IV: Logic Rule Induction/Learning



Logical Rules

• Symmetric/Antisymmetric Rule
• Symmetric: e.g., Marriage
• Antisymmetric: e.g., Filiation

• Formally:

𝑟!" X, 𝑌 ← 𝑟(𝑋, 𝑌)∀ 𝑋, 𝑌

¬𝑟!"(𝑋, 𝑌) ← 𝑟 𝑋, 𝑌 if ∀ 𝑋, 𝑌

r is Symmetric:

r is Antisymmetric:
Rule Head Rule Body



Logical Rules

• Inverse Rule
• Hypernym and hyponym
• Husband and wife

• Formally:

𝑟"!"(𝑋, 𝑌) ← 𝑟# 𝑋, 𝑌 if ∀ 𝑋, 𝑌𝑟! is inverse to relation 𝑟":



Logical Rules

• Composition Rule
• My mother’s husband is my father

• Formally:

𝑟"(𝑋, 𝑍) ← 𝑟# 𝑋, 𝑌 ∧ 𝑟$(𝑌, 𝑍) if ∀ 𝑋, Y, Z𝑟! is a composition of relation 𝑟"
and relation 𝑟#:



TransE (Bordes et al. 2013)

• Each entity and relation is embedded as a low-dimensional vector
• Relation r defined as a translation from the head entity h to the tail

entity t.

• Scoring function:

t = h +r

−||𝐡 + 𝐫 − 𝐭||



Question

• What kinds of logical rules TransE can model and infer?



TransR (Lin et al. 2015)

• Limitations of TransE: entities and relations are assumed to be lie in
the same space, which might not be true
• Map entities to the semantic space of relations through a projection

• Scoring function:

−||𝐡𝐫 + 𝐫 − 𝐭𝐫||

𝐡𝐫 = 𝐡𝐌𝐫 𝐭𝐫 = 𝐭𝐌𝐫



RotatE (Sun et al. 2019)
• Representing head and tail entities in complex vector space, i.e., 𝐡, 𝐭 ∈
ℂ𝒌

• Define each relation r as an element-wise rotation from the head entity 
𝐡 to the tail entity 𝐭, i.e., 

• ° is the element-wise product. More specifically, we have t# = h#r#, 
and

• where 𝜃$,& is the phase angle of r in the i-th dimension.

𝐭 = 𝐡° 𝒓, where |𝑟&|=1 

r# = 𝑒&'!,# ,



Geometric Interpretation

• Define the distance function of RotatE as

𝑑𝒓 𝒉, 𝒕 = ||𝐡° 𝐫 − 𝐭||



Modeling the Relation Patterns with 
RotatE
• A relation r is symmetric if and only if 𝑟& = ±1, i.e., 

• An example on the space of ℂ

𝜃%,' = 0 𝑜𝑟 𝜋

𝑟' = −1 or 𝜃%,' = 𝜋



Modeling the Relation Patterns with 
RotatE
• A relation r is antisymmetric if and only if 𝐫° 𝐫 ≠ 𝟏

• Two relations 𝑟) and 𝑟* are inverse if and only if  𝐫* = 9𝐫), i.e., 

• A relation 𝒓𝟑 = 𝑒&𝜽𝟑 is a composition of two relations  𝒓𝟏 = 𝑒&𝜽𝟏 and 
𝒓𝟐 = 𝑒&𝜽𝟐 if only if 𝒓𝟑 = 𝒓𝟏 ∘ 𝒓𝟐, i.e., 

𝜃#,' = −𝜃",'

𝜽𝟑 = 𝜽𝟏 + 𝜽𝟐



Optimization (Sun et al. 2019)

• Negative sampling loss

• 𝛾 is a fixed margin, 𝜎 is the sigmoid function, and (𝒉&/ , 𝒓, 𝒕&/) is the i-th
negative triplet. 

𝐿 = − log 𝜎 𝛾 − 𝑑$ 𝒉, 𝒕 −C
&0)

1
1
𝑘
log 𝜎(𝑑$ 𝒉&/ , 𝒕&/ − 𝛾)



Self-adversarial Negative Sampling (Sun et
al. 2019)
• Traditionally, the negative samples are drawn in an uniform way
• Inefficient as training goes on since many samples are obviously false
• Does not provide useful information

• A self-adversarial negative sampling
• Sample negative triplets according to the current embedding model
• Starts from easier samples to more and more difficult samples
• Curriculum Learning

• 𝛼 is the temperature of sampling. 𝑓$(ℎ2/, 𝑡2/) measures the salience of 
the triplet

Published as a conference paper at ICLR 2019

Dataset #entity #relation #training #validation #test
FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 3: Number of entities, relations, and observed triples in each split for four benchmarks.

Lemma 2. RotatE can infer the inversion pattern. (See proof in Appendix C)

Lemma 3. RotatE can infer the composition pattern. (See proof in Appendix D)

These results are also summarized into Table 2. We can see that the RotatE model is the only model
that can model and infer all the three types of relation patterns.

Connection to TransE. From Table 2, we can see that TransE is able to infer and model all the
other relation patterns except the symmetry pattern. The reason is that in TransE, any symmetric
relation will be represented by a 0 translation vector. As a result, this will push the entities with
symmetric relations to be close to each other in the embedding space. RotatE solves this problem
and is a able to model and infer the symmetry pattern. An arbitrary vector r that satisfies ri = ±1
can be used for representing a symmetric relation in RotatE, and thus the entities having symmetric
relations can be distinguished. Different symmetric relations can be also represented with different
embedding vectors. Figure 1 provides illustrations of TransE and RotatE with only 1-dimensional
embedding and shows how RotatE models a symmetric relation.

3.3 OPTIMIZATION

Negative sampling has been proved quite effective for both learning knowledge graph embedding
(Trouillon et al., 2016) and word embedding (Mikolov et al., 2013). Here we use a loss function
similar to the negative sampling loss (Mikolov et al., 2013) for effectively optimizing distance-based
models:

L = � log �(� � dr(h, t))�
nX

i=1

1

k
log �(dr(h

0
i, t

0
i)� �), (4)

where � is a fixed margin, � is the sigmoid function, and (h0i, r, t
0
i) is the i-th negative triplet.

We also propose a new approach for drawing negative samples. The negative sampling loss samples
the negative triplets in a uniform way. Such a uniform negative sampling suffers the problem of
inefficiency since many samples are obviously false as training goes on, which does not provide
any meaningful information. Therefore, we propose an approach called self-adversarial negative
sampling, which samples negative triples according to the current embedding model. Specifically,
we sample negative triples from the following distribution:

p(h0
j , r, t

0
j |{(hi, ri, ti)}) =

exp↵fr(h0
j , t

0
j)P

i exp↵fr(h
0
i, t

0
i)

(5)

where ↵ is the temperature of sampling. Moreover, since the sampling procedure may be costly,
we treat the above probability as the weight of the negative sample. Therefore, the final negative
sampling loss with self-adversarial training takes the following form:

L = � log �(� � dr(h, t))�
nX

i=1

p(h0
i, r, t

0
i) log �(dr(h

0
i, t

0
i)� �) (6)

In the experiments, we will compare different approaches for negative sampling.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

We evaluate our proposed model on four widely used knowledge graphs. The statistics of these
knowledge graphs are summarized into Table 3.

5



The Final Objective

• Instead of sampling, treating the sampling probabilities as weights.

Published as a conference paper at ICLR 2019

Dataset #entity #relation #training #validation #test
FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 3: Number of entities, relations, and observed triples in each split for four benchmarks.

Lemma 2. RotatE can infer the inversion pattern. (See proof in Appendix C)

Lemma 3. RotatE can infer the composition pattern. (See proof in Appendix D)

These results are also summarized into Table 2. We can see that the RotatE model is the only model
that can model and infer all the three types of relation patterns.

Connection to TransE. From Table 2, we can see that TransE is able to infer and model all the
other relation patterns except the symmetry pattern. The reason is that in TransE, any symmetric
relation will be represented by a 0 translation vector. As a result, this will push the entities with
symmetric relations to be close to each other in the embedding space. RotatE solves this problem
and is a able to model and infer the symmetry pattern. An arbitrary vector r that satisfies ri = ±1
can be used for representing a symmetric relation in RotatE, and thus the entities having symmetric
relations can be distinguished. Different symmetric relations can be also represented with different
embedding vectors. Figure 1 provides illustrations of TransE and RotatE with only 1-dimensional
embedding and shows how RotatE models a symmetric relation.

3.3 OPTIMIZATION

Negative sampling has been proved quite effective for both learning knowledge graph embedding
(Trouillon et al., 2016) and word embedding (Mikolov et al., 2013). Here we use a loss function
similar to the negative sampling loss (Mikolov et al., 2013) for effectively optimizing distance-based
models:

L = � log �(� � dr(h, t))�
nX

i=1

1

k
log �(dr(h

0
i, t

0
i)� �), (4)

where � is a fixed margin, � is the sigmoid function, and (h0i, r, t
0
i) is the i-th negative triplet.

We also propose a new approach for drawing negative samples. The negative sampling loss samples
the negative triplets in a uniform way. Such a uniform negative sampling suffers the problem of
inefficiency since many samples are obviously false as training goes on, which does not provide
any meaningful information. Therefore, we propose an approach called self-adversarial negative
sampling, which samples negative triples according to the current embedding model. Specifically,
we sample negative triples from the following distribution:

p(h0
j , r, t

0
j |{(hi, ri, ti)}) =

exp↵fr(h0
j , t

0
j)P

i exp↵fr(h
0
i, t

0
i)

(5)

where ↵ is the temperature of sampling. Moreover, since the sampling procedure may be costly,
we treat the above probability as the weight of the negative sample. Therefore, the final negative
sampling loss with self-adversarial training takes the following form:

L = � log �(� � dr(h, t))�
nX

i=1

p(h0
i, r, t

0
i) log �(dr(h

0
i, t

0
i)� �) (6)

In the experiments, we will compare different approaches for negative sampling.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

We evaluate our proposed model on four widely used knowledge graphs. The statistics of these
knowledge graphs are summarized into Table 3.

5



Other Approaches

• TransH (Wang et al. 2014)
• STransE (Nguyen et al. 2016)
• DisMult (Yang et al. 2014)
• ComplEx (Trouillon et al. 2016)
• HolE (Nickel et al. 2016)
• ConvE (Dettmers et al. 2017)
• QuaE (Zhang et al. 2019)
• …



Analysis on Inferring Different Types of
Logical RulesPublished as a conference paper at ICLR 2019

Model Score Function Symmetry Antisymmetry Inversion Composition
SE �kWr,1h�Wr,2tk 7 7 7 7

TransE �kh+ r� tk 7 3 3 3
TransX �kgr,1(h) + r� gr,2(t)k 3 3 7 7

DistMult hh, r, ti 3 7 7 7
ComplEx Re(hh, r, ti) 3 3 3 7

RotatE �kh � r� tk 3 3 3 3

Table 2: The pattern modeling and inference abilities of several models.

Formally, let E denote the set of entities and R denote the set of relations, then a knowledge graph
is a collection of factual triplets (h, r, t), where h, t 2 E and r 2 R. Since entity embeddings are
usually represented as vectors, the score function usually takes the form fr(h, t), where h and t are
head and tail entity embeddings. The score function fr(h, t) measures the salience of a candidate
triplet (h, r, t). The goal of the optimization is usually to score true triplet (h, r, t) higher than the
corrupted false triplets (h0, r, t) or (h, r, t0). Table 1 summarizes different score functions fr(h, t)
in previous state-of-the-art methods as well as the model proposed in this paper. These models gen-
erally capture only a portion of the relation patterns. For example, TransE represents each relation
as a bijection between source entities and target entities, and thus implicitly models inversion and
composition of relations, but it cannot model symmetric relations; ComplEx extends DistMult by
introducing complex embeddings so as to better model asymmetric relations, but it cannot infer the
composition pattern. The proposed RotatE model leverages the advantages of both.

A relevant and concurrent work to our work is the TorusE (Ebisu & Ichise, 2018) model, which
defines knowledge graph embedding as translations on a compact Lie group. The TorusE model
can be regarded as a special case of RotatE, where the modulus of embeddings are set fixed; our
RotatE is defined on the entire complex space, which has much more representation capacity. Our
experiments show that this is very critical for modeling and inferring the composition patterns.
Moreover, TorusE focuses on the problem of regularization in TransE while this paper focuses on
modeling and inferring multiple types of relation patterns.

There are also a large body of relational approaches for modeling the relational patterns on knowl-
edge graphs (Lao et al., 2011; Neelakantan et al., 2015; Das et al., 2016; Rocktäschel & Riedel,
2017; Yang et al., 2017). However, these approaches mainly focus on explicitly modeling the rela-
tional paths while our proposed RotatE model implicitly learns the relation patterns, which is not
only much more scalable but also provides meaningful embeddings for both entities and relations.

Another related problem is how to effectively draw negative samples for training knowledge graph
embeddings. This problem has been explicitly studied by Cai & Wang (2017), which proposed a
generative adversarial learning framework to draw negative samples. However, such a framework
requires simultaneously training the embedding model and a discrete negative sample generator,
which are difficult to optimize and also computationally expensive. We propose a self-adversarial
sampling scheme which only relies on the current model. It does require any additional optimization
component, which make it much more efficient.

3 ROTATE: RELATIONAL ROTATION IN COMPLEX VECTOR SPACE

In this section, we introduce our proposed RotatE model. We first introduce three important relation
patterns that are widely studied in the literature of link prediction on knowledge graphs. Afterwards,
we introduce our proposed RotatE model, which defines relations as rotations in complex vector
space. We also show that the RotatE model is able to model and infer all three relation patterns.

3.1 MODELING AND INFERRING RELATION PATTERNS

The key of link prediction in knowledge graph is to infer the connection patterns, e.g., relation
patterns, with observed facts. According to the existing literature (Trouillon et al., 2016; Toutanova
& Chen, 2015; Guu et al., 2015; Lin et al., 2015a), three types of relation patterns are very important
and widely spread in knowledge graphs: symmetry, inversion and composition. We give their formal
definition here:

3



Benchmark Data Sets
• FB15K: a subset of Freebase. The main relation types are 

symmetry/antisymmetry and inversion patterns.  
• WN18: a subset of WordNet. The main relation types are 

symmetry/antisymmetry and inversion patterns. 
• FB15K-237:  a subset of FB15K, where inversion relations are deleted. The main 

relation types are symmetry/antisymmetry and composition patterns.
• WN18RR: a subset of WN18, where inversion relations are deleted. The main 

relation types are symmetry/antisymmetry and composition patterns.



Results on FB15k and WN18

• RotatE performs the best
• pRotatE performs similarly to RotatE

Published as a conference paper at ICLR 2019

FB15k WN18
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE [�] - .463 .297 .578 .749 - .495 .113 .888 .943
DistMult [�] 42 .798 - - .893 655 .797 - - .946

HolE - .524 .402 .613 .739 - .938 .930 .945 .949
ComplEx - .692 .599 .759 .840 - .941 .936 .945 .947

ConvE 51 .657 .558 .723 .831 374 .943 .935 .946 .956
pRotatE 43 .799 .750 .829 .884 254 .947 .942 .950 .957
RotatE 40 .797 .746 .830 .884 309 .949 .944 .952 .959

Table 4: Results of several models evaluated on the FB15K and WN18 datasets. Results of [�] are
taken from (Nickel et al., 2016) and results of [�] are taken from (Kadlec et al., 2017). Other results
are taken from the corresponding original papers.

• FB15k (Bordes et al., 2013) is a subset of Freebase (Bollacker et al., 2008), a large-scale
knowledge graph containing general knowledge facts. Toutanova & Chen (2015) showed
that almost 81% of the test triplets (x, r, y) can be inferred via a directly linked triplet
(x, r0, y) or (y, r0, x). Therefore, the key of link prediction on FB15k is to model and infer
the symmetry/antisymmetry and inversion patterns.

• WN18 (Bordes et al., 2013) is a subset of WordNet (Miller, 1995), a database featuring
lexical relations between words. This dataset also has many inverse relations. So the main
relation patterns in WN18 are also symmetry/antisymmetry and inversion.

• FB15k-237 (Toutanova & Chen, 2015) is a subset of FB15k, where inverse relations are
deleted. Therefore, the key of link prediction on FB15k-237 boils down to model and infer
the symmetry/antisymmetry and composition patterns.

• WN18RR (Dettmers et al., 2017) is a subset of WN18. The inverse relations are deleted,
and the main relation patterns are symmetry/antisymmetry and composition.

Hyperparameter Settings. We use Adam (Kingma & Ba, 2014) as the optimizer and fine-tune the
hyperparameters on the validation dataset. The ranges of the hyperparameters for the grid search are
set as follows: embedding dimension4 k 2 {125, 250, 500, 1000}, batch size b 2 {512, 1024, 2048},
self-adversarial sampling temperature ↵ 2 {0.5, 1.0}, and fixed margin � 2 {3, 6, 9, 12, 18, 24, 30}.
Both the real and imaginary parts of the entity embeddings are uniformly initialized, and the phases
of the relation embeddings are uniformly initialized between 0 and 2⇡. No regularization is used
since we find that the fixed margin � could prevent our model from over-fitting.

Evaluation Settings. We evaluate the performance of link prediction in the filtered setting: we
rank test triples against all other candidate triples not appearing in the training, validation, or test
set, where candidates are generated by corrupting subjects or objects: (h0, r, t) or (h, r, t0). Mean
Rank (MR), Mean Reciprocal Rank (MRR) and Hits at N (H@N) are standard evaluation measures
for these datasets and are evaluated in our experiments.

Baseline. Apart from RotatE, we propose a variant of RotatE as baseline, where the modulus of
the entity embeddings are also constrained: |hi| = |ti| = C, and the distance function is thus
2C

��sin ✓h+✓r�✓t
2

�� (See Equation 17 at Appendix F for a detailed derivation). In this way, we can
investigate how RotatE works without modulus information and with only phase information. We
refer to the baseline as pRotatE. It is obvious to see that pRotatE can also model and infer all the
three relation patterns.

4.2 MAIN RESULTS

We compare RotatE to several state-of-the-art models, including TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), HolE (Nickel et al., 2016), and ConvE

4Following Trouillon et al. (2016), we treat complex number as the same as real number with regard to the
embedding dimension. If the same number of dimension is used for both the real and imaginary parts of the
complex number as the real number, the number of parameters for the complex embedding would be twice the
number of parameters for the embeddings in the real space.

6



Results on FB15k-237 and WN18RR

• RotatE performs the best
• RotatE performs significantly better than pRotatE
• A lot of composition patterns on the two data sets
• Modulus information are important for modeling the composition patterns

Published as a conference paper at ICLR 2019

FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE [�] 357 .294 - - .465 3384 .226 - - .501
DistMult 254 .241 .155 .263 .419 5110 .43 .39 .44 .49
ComplEx 339 .247 .158 .275 .428 5261 .44 .41 .46 .51

ConvE 244 .325 .237 .356 .501 4187 .43 .40 .44 .52
pRotatE 178 .328 .230 .365 .524 2923 .462 .417 .479 .552
RotatE 177 .338 .241 .375 .533 3340 .476 .428 .492 .571

Table 5: Results of several models evaluated on the FB15k-237 and WN18RR datasets. Results of
[�] are taken from (Nguyen et al., 2017). Other results are taken from (Dettmers et al., 2017).

Countries (AUC-PR)
DistMult ComplEx ConvE RotatE

S1 1.00± 0.00 0.97± 0.02 1.00± 0.00 1.00± 0.00
S2 0.72± 0.12 0.57± 0.10 0.99± 0.01 1.00± 0.00
S3 0.52± 0.07 0.43± 0.07 0.86± 0.05 0.95± 0.00

Table 6: Results on the Countries datasets. Other results are taken from (Dettmers et al., 2017).

(Dettmers et al., 2017), as well as our baseline model pRotatE, to empirically show the importance
of modeling and inferring the relation patterns for the task of predicting missing links.

Table 4 summarizes our results on FB15k and WN18. We can see that RotatE outperforms all the
state-of-the-art models. The performance of pRotatE and RotatE are similar on these two datasets.
Table 5 summarizes our results on FB15k-237 and WN18RR, where the improvement is much
more significant. The difference between RotatE and pRotatE is much larger on FB15k-237 and
WN18RR, where there are a lot of composition patterns. This indicates that modulus is very impor-
tant for modeling and inferring the composition pattern.

Moreover, the performance of these models on different datasets is consistent with our analysis on
the three relation patterns (Table 2):

• On FB15K, the main relation patterns are symmetry/antisymmetry and inversion. We
can see that ComplEx performs well while TransE does not perform well since Com-
plEx can infer both symmetry/antisymmetry and inversion patterns while TransE can-
not infer symmetry pattern. Surprisingly, DistMult achieves good performance on this
dataset although it cannot model the antisymmetry and inversion patterns. The reason
is that for most of the relations in FB15K, the types of head entities and tail entities
are different. Although DistMult gives the same score to a true triplet (h, r, t) and
its opposition triplet (t, r, h), (t, r, h) is usually impossible to be valid since the en-
tity type of t does not match the head entity type of h. For example, DistMult assigns
the same score to (Obama, nationality, USA) and (USA, nationality, Obama). But
(USA, nationality, Obama) can be simply predicted as false since USA cannot be the head
entity of the relation nationality.

• On WN18, the main relation patterns are also symmetry/antisymmetry and inversion. As
expected, ComplEx still performs very well on this dataset. However, different from the
results on FB15K, the performance of DistMult significantly decreases on WN18. The
reason is that DistMult cannot model antisymmetry and inversion patterns, and almost all
the entities in WN18 are words and belong to the same entity type, which do not have the
same problem as FB15K.

• On FB15k-237, the main relation pattern is composition. We can see that TransE performs
really well while ComplEx does not perform well. The reason is that, as discussed before,
TransE is able to infer the composition pattern while ComplEx cannot infer the composition
pattern.

• On WN18RR, one of the main relation patterns is the symmetry pattern since almost each
word has a symmetric relation in WN18RR, e.g., also see and similar to. TransE does
not well on this dataset since it is not able to model the symmetric relations.

7



Results on Countries (Bouchard et al. 
2015)
• A carefully designed dataset to explicitly test the capabilities for 

modeling the composition patterns
• Three subtasks S1, S2, S3
• From easy to difficult

Published as a conference paper at ICLR 2019

FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE [�] 357 .294 - - .465 3384 .226 - - .501
DistMult 254 .241 .155 .263 .419 5110 .43 .39 .44 .49
ComplEx 339 .247 .158 .275 .428 5261 .44 .41 .46 .51

ConvE 244 .325 .237 .356 .501 4187 .43 .40 .44 .52
pRotatE 178 .328 .230 .365 .524 2923 .462 .417 .479 .552
RotatE 177 .338 .241 .375 .533 3340 .476 .428 .492 .571

Table 5: Results of several models evaluated on the FB15k-237 and WN18RR datasets. Results of
[�] are taken from (Nguyen et al., 2017). Other results are taken from (Dettmers et al., 2017).

Countries (AUC-PR)
DistMult ComplEx ConvE RotatE

S1 1.00± 0.00 0.97± 0.02 1.00± 0.00 1.00± 0.00
S2 0.72± 0.12 0.57± 0.10 0.99± 0.01 1.00± 0.00
S3 0.52± 0.07 0.43± 0.07 0.86± 0.05 0.95± 0.00

Table 6: Results on the Countries datasets. Other results are taken from (Dettmers et al., 2017).

(Dettmers et al., 2017), as well as our baseline model pRotatE, to empirically show the importance
of modeling and inferring the relation patterns for the task of predicting missing links.

Table 4 summarizes our results on FB15k and WN18. We can see that RotatE outperforms all the
state-of-the-art models. The performance of pRotatE and RotatE are similar on these two datasets.
Table 5 summarizes our results on FB15k-237 and WN18RR, where the improvement is much
more significant. The difference between RotatE and pRotatE is much larger on FB15k-237 and
WN18RR, where there are a lot of composition patterns. This indicates that modulus is very impor-
tant for modeling and inferring the composition pattern.

Moreover, the performance of these models on different datasets is consistent with our analysis on
the three relation patterns (Table 2):

• On FB15K, the main relation patterns are symmetry/antisymmetry and inversion. We
can see that ComplEx performs well while TransE does not perform well since Com-
plEx can infer both symmetry/antisymmetry and inversion patterns while TransE can-
not infer symmetry pattern. Surprisingly, DistMult achieves good performance on this
dataset although it cannot model the antisymmetry and inversion patterns. The reason
is that for most of the relations in FB15K, the types of head entities and tail entities
are different. Although DistMult gives the same score to a true triplet (h, r, t) and
its opposition triplet (t, r, h), (t, r, h) is usually impossible to be valid since the en-
tity type of t does not match the head entity type of h. For example, DistMult assigns
the same score to (Obama, nationality, USA) and (USA, nationality, Obama). But
(USA, nationality, Obama) can be simply predicted as false since USA cannot be the head
entity of the relation nationality.

• On WN18, the main relation patterns are also symmetry/antisymmetry and inversion. As
expected, ComplEx still performs very well on this dataset. However, different from the
results on FB15K, the performance of DistMult significantly decreases on WN18. The
reason is that DistMult cannot model antisymmetry and inversion patterns, and almost all
the entities in WN18 are words and belong to the same entity type, which do not have the
same problem as FB15K.

• On FB15k-237, the main relation pattern is composition. We can see that TransE performs
really well while ComplEx does not perform well. The reason is that, as discussed before,
TransE is able to infer the composition pattern while ComplEx cannot infer the composition
pattern.

• On WN18RR, one of the main relation patterns is the symmetry pattern since almost each
word has a symmetric relation in WN18RR, e.g., also see and similar to. TransE does
not well on this dataset since it is not able to model the symmetric relations.

7



Wikidata5M: a Large-scale Knowledge
Graph (Wang et al. 2019)
• Contains 5 million entities and also the the descriptions of entities
• Pretrained knowledge graph embeddings with Wikidata5M:

https://graphvite.io/pretrained_models

https://graphvite.io/pretrained_models


Open Source Package

• OpenKE by Prof. Zhiyuan Liu’s group:
https://github.com/thunlp/OpenKE
• KnowldgeGraphEmbedding by Prof. Jian Tang’s group:

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
• GraphVite by Prof. Jian Tang’s group: https://graphvite.io/
• DGL-KGE by Amazon: https://github.com/awslabs/dgl-ke

https://github.com/thunlp/OpenKE
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://graphvite.io/
https://github.com/awslabs/dgl-ke


Roadmap

• Part I: Reasoning in Continuous Space

• Part II: Symbolic Logic Reasoning

• Part III: Neural-Symbolic Logic Reasoning

• Part IV: Logic Rule Induction/Learning



Logic Programming

• Logic programs consist of clauses
• Each clause can be viewed as a first-order logic rule
• Example:
• ∀𝑋, 𝑌, 𝑍 Grandfather 𝑋, 𝑌 ← Father 𝑋, 𝑍 ∧ Father 𝑍, 𝑌

• Apply logic rules to existing facts to infer new facts

Rule Head Rule Body



Inference Algorithms

• Two fundamental algorithms:
• Forward chaining algorithm:
• Repeatly apply given logic rules to the current set of facts, until the fact 

set converges.
• Strength: able to find a large number of facts every time
• Weakness: inefficient and high memory cost

• Backward chaining algorithm:
• For each query, use the given logic rules and depth-first search to 

construct a search tree to infer the answer.
• Strength: efficient
• Weakness: focus on each individual query



Inference Algorithms

• Examples:
• Given facts: Father 𝑎, 𝑏 Father 𝑏, 𝑐 Father 𝑐, 𝑑
• Given logic rule: ∀𝑋, 𝑌, 𝑍 Grandfather 𝑋, 𝑌 ← Father 𝑋, 𝑍 ∧ Father 𝑍, 𝑌

Forward Chaining Backward Chaining

Iteration 0: Father 𝑎, 𝑏 Father 𝑏, 𝑐 Father 𝑐, 𝑑

Iteration 1: Father 𝑎, 𝑏 Father 𝑏, 𝑐 Father 𝑐, 𝑑
Grandfather 𝑎, 𝑐 Grandfather 𝑏, 𝑑

Iteration 2: Father 𝑎, 𝑏 Father 𝑏, 𝑐 Father 𝑐, 𝑑
Grandfather 𝑎, 𝑐 Grandfather 𝑏, 𝑑

Convergence

Query: Grandfather ? , 𝑐

Father ? , 𝑍 ∧ Father 𝑍, 𝑐

Apply the given rule

Father ? , 𝑏
Replace 𝑍 with 𝑏

?= 𝑎

Replace ? with 𝑎



Logic Programming in Probabilistic Ways

• Combine first-order logic with probabilistic models
• Model logic rules in a probabilistic way, yielding soft rules.
• Handle the uncertainty of logic rules

• Representative methods:
• Markov logic programming (Richardson and Domingos, 2006):
• Markov Logic Networks (Richardson and Domingos, 2006)

• Stochastic logic programming (Cussens, 2001) :
• TensorLog (Cohen et al. 2017)



Markov Logic Programming
(Richardson and Domingos, 2006)
• Associate a scalar weight to each logic rule

• Apply the given logic rules to the given facts, and use the forward 
chaining algorithm to find a collection of relevant facts.

• Build a Markov network and perform inference to predict the value 
of each fact (true/false)



Markov Logic Programming
(Richardson and Domingos, 2006)
• Example:
• Rules:

• R1: ∀𝑋, 𝑌 Nationality 𝑋, 𝑌 ← LoveIn 𝑋, 𝑌 weight 0.2
• R2: ∀𝑋, 𝑌 Nationality 𝑋, 𝑌 ← PoliticianOf 𝑋, 𝑌 weight 2.6
• R3: ∀𝑋, 𝑌 Nationality 𝑋, 𝑍 ← BornIn 𝑋, 𝑌 ∧ CityOf(𝑌, 𝑍) weight 1.5

• All obtained facts and the graph structure:

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

𝑝 𝐯! , 𝐯" =
1
𝑍 exp B

#∈%

𝑤#𝑛# 𝐯! , 𝐯"

𝐯!: Observed facts
𝐯": Hidden facts inferred by forward chaining

𝑤#: Weight of rule 𝑙

𝑛#: Number of times 𝑙 is satisfied



Stochastic Logic Programming
(Cussens, 2001)
• Associate a scalar weight to each logic rule

• For each query, use the given logic rules and backward chaining
algoritm to build a search tree.

• Infer the answer according to rule weights and tree structure



Stochastic Logic Programming
(Cussens, 2001)
• Example:
• Rules:

• R1: ∀𝑋, 𝑌 Nationality 𝑋, 𝑌 ← BornIn 𝑋, 𝑌 weight 3.0
• R2: ∀𝑋, 𝑌 BornIn 𝑋, 𝑌 ← LiveIn 𝑋, 𝑌 weight 0.8
• R3: ∀𝑋, 𝑌 BornIn 𝑋, 𝑌 ← GrewUpIn 𝑋, 𝑌 weight 1.2

Query:
Nationality 𝐵𝑜𝑏, ? BornIn 𝐵𝑜𝑏, ?

Apply R1

LiveIn 𝐵𝑜𝑏, ?

GrewUpIn 𝐵𝑜𝑏, ?

Apply R2

Apply R3

Canada
Score = R1.wt×R2.wt = 2.4

USA
Score = R1.wt×R3.wt = 3.6

P = 0.33

P = 0.67

Multiplying the weights of rules 
in a reasoning path as score

Normalizing entity scores to get 
a distribution for the answer



Other Formalizations

• Bayesian logic programming (Kersting and De Raedt et al. 2001):
• Model each logic rule as a conditional distribution
• Methods:
• DeepProbLog (Manhaeve et al. 2018)
• SPLog (Skryagin et al. 2020)



Roadmap

• Part I: Reasoning in Continuous Space

• Part II: Symbolic Logic Reasoning

• Part III: Neural-Symbolic Logic Reasoning

• Part IV: Logic Rule Induction/Learning



Markov Logic Networks
(Richardson and Domingos, 2006)
• Combines first-order logic and probabilistic graphical models

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

Live(X, Y) => Nationality (X, Y)

Politician_of(X, Y) => Nationality (X, Y)

Born(X,Y)∧City_of (Y,Z) => Nationality(X, Z)

0.2

2.6

1.5

3 Preliminary
3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
Due to the high cost of knowledge graph construction, the coverage of knowledge graphs is usually
limited. Therefore, a critical problem on knowledge graphs is to predict the missing facts.

Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of relations, and
O is a set of observed (h, r, t) triplets, the goal is to infer the missing triplets by reasoning with the
observed triplets. Following existing studies [25], the problem can be reformulated in a probabilistic
way. Each triplet (h, r, t) is associated with a binary indicator variable v(h,r,t). v(h,r,t) = 1 means
(h, r, t) is true, and v(h,r,t) = 0 otherwise. Given some true facts vO = {v(h,r,t) = 1}(h,r,t)2O, we
aim to predict the labels of the remaining hidden triplets H , i.e., vH = {v(h,r,t)}(h,r,t)2H . We will
discuss how to generate the hidden triplets H later in Sec. 4.4.

This problem has been extensively studied in both traditional logic rule-based methods and recent
knowledge graph embedding methods. For logic rule-based methods, we mainly focus on one
representative approach, the Markov logic network. Essentially, both types of methods aim to model
the joint distribution of the observed and hidden triplets p(vO,vH). Next, we briefly introduce the
Markov logic network (MLN) [32] and the knowledge graph embedding methods [3, 42, 45].

3.2 Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed and the
hidden triplets, where the potential function is defined by the first-order logic. Some common logic
rules to encode domain knowledge include: (1) Composition Rules. A relation rk is a composition of
ri and rj means that for any three entities x, y, z, if x has relation ri with y, and y has relation rj with
z, then x has relation rk with z. Formally, we have 8x, y, z 2 E,v(x,ri,y) ^ v(y,rj ,z) ) v(x,rk,z).
(2) Inverse Rules. A relation rj is an inverse of ri indicates that for two entities x, y, if x has relation
ri with y, then y has relation rj with x. We can represent the rule as 8x, y 2 E,v(x,ri,y) ) v(y,rj ,x).
(3) Symmetric Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation
r with y, then y also has relation r with x. Formally, we have 8x, y 2 E,v(x,r,y) ) v(y,r,x). (4)
Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity pair x, y, if x and y
have relation ri, then they also have relation rj . Formally, we have 8x, y 2 E,v(x,ri,y) ) v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the entity
placeholders in the logic rule with real entities in knowledge graphs. For example, for a subre-
lation rule, 8x, y,v(x,Born in,y) ) v(x,Live in,y), two groundings in Gl can be v(Newton,Born in,UK) )
v(Newton,Live in,UK) and v(Einstein,Born in,German) ) v(Einstein,Live in,German). We see that the former one is
true while the latter one is false. To handle such uncertainty of logic rules, Markov logic networks
introduce a weight wl for each rule l, and then the joint distribution of all triplets is defined as follows:

p(vO,vH) =
1

Z
exp

0

@
X

l2L

wl

X

g2Gl

{g is true}

1

A =
1

Z
exp

 
X

l2L

wlnl(vO,vH)

!
, (1)

where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [23].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e 2 E and relation r 2 R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:

p(vO,vH) =
Y

(h,r,t)2O[H

Ber(v(h,r,t)|f(xh,xr,xt)), (2)

3

V!: observed facts
V": unobserved/hidden facts

𝑤#: weight of logic rule 𝑙
𝑛#(V! , V"): number of true grounds of the logic rule 𝑙

45



Pros and Cons of Markov Logic Networks

• Pros
• Effectively leverage domain knowledge with logic rules
• Handle the uncertainty

• Limitation
• Inference is difficult due to complicated graph structures
• Recall is low since many facts are not covered by any logic rules

46



Knowledge Graph Embeddings

• Learning the entity and relation embeddings for predicting the missing 
facts (e.g., TransE, ComplEx, DisMult, RotatE)
• Defining the joint distribution of all the facts

• Trained by treating VY as positive facts and VZ as negative facts

3 Preliminary
3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
Due to the high cost of knowledge graph construction, the coverage of knowledge graphs is usually
limited. Therefore, a critical problem on knowledge graphs is to predict the missing facts.

Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of relations, and
O is a set of observed (h, r, t) triplets, the goal is to infer the missing triplets by reasoning with the
observed triplets. Following existing studies [25], the problem can be reformulated in a probabilistic
way. Each triplet (h, r, t) is associated with a binary indicator variable v(h,r,t). v(h,r,t) = 1 means
(h, r, t) is true, and v(h,r,t) = 0 otherwise. Given some true facts vO = {v(h,r,t) = 1}(h,r,t)2O, we
aim to predict the labels of the remaining hidden triplets H , i.e., vH = {v(h,r,t)}(h,r,t)2H . We will
discuss how to generate the hidden triplets H later in Sec. 4.4.

This problem has been extensively studied in both traditional logic rule-based methods and recent
knowledge graph embedding methods. For logic rule-based methods, we mainly focus on one
representative approach, the Markov logic network. Essentially, both types of methods aim to model
the joint distribution of the observed and hidden triplets p(vO,vH). Next, we briefly introduce the
Markov logic network (MLN) [32] and the knowledge graph embedding methods [3, 42, 45].

3.2 Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed and the
hidden triplets, where the potential function is defined by the first-order logic. Some common logic
rules to encode domain knowledge include: (1) Composition Rules. A relation rk is a composition of
ri and rj means that for any three entities x, y, z, if x has relation ri with y, and y has relation rj with
z, then x has relation rk with z. Formally, we have 8x, y, z 2 E,v(x,ri,y) ^ v(y,rj ,z) ) v(x,rk,z).
(2) Inverse Rules. A relation rj is an inverse of ri indicates that for two entities x, y, if x has relation
ri with y, then y has relation rj with x. We can represent the rule as 8x, y 2 E,v(x,ri,y) ) v(y,rj ,x).
(3) Symmetric Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation
r with y, then y also has relation r with x. Formally, we have 8x, y 2 E,v(x,r,y) ) v(y,r,x). (4)
Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity pair x, y, if x and y
have relation ri, then they also have relation rj . Formally, we have 8x, y 2 E,v(x,ri,y) ) v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the entity
placeholders in the logic rule with real entities in knowledge graphs. For example, for a subre-
lation rule, 8x, y,v(x,Born in,y) ) v(x,Live in,y), two groundings in Gl can be v(Newton,Born in,UK) )
v(Newton,Live in,UK) and v(Einstein,Born in,German) ) v(Einstein,Live in,German). We see that the former one is
true while the latter one is false. To handle such uncertainty of logic rules, Markov logic networks
introduce a weight wl for each rule l, and then the joint distribution of all triplets is defined as follows:

p(vO,vH) =
1

Z
exp

0

@
X

l2L

wl

X

g2Gl

{g is true}

1

A =
1

Z
exp

 
X

l2L

wlnl(vO,vH)

!
, (1)

where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [23].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e 2 E and relation r 2 R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:

p(vO,vH) =
Y

(h,r,t)2O[H

Ber(v(h,r,t)|f(xh,xr,xt)), (2)

3

An example:

3 Preliminary
3.1 Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as a triplet (h, r, t).
Due to the high cost of knowledge graph construction, the coverage of knowledge graphs is usually
limited. Therefore, a critical problem on knowledge graphs is to predict the missing facts.

Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of relations, and
O is a set of observed (h, r, t) triplets, the goal is to infer the missing triplets by reasoning with the
observed triplets. Following existing studies [25], the problem can be reformulated in a probabilistic
way. Each triplet (h, r, t) is associated with a binary indicator variable v(h,r,t). v(h,r,t) = 1 means
(h, r, t) is true, and v(h,r,t) = 0 otherwise. Given some true facts vO = {v(h,r,t) = 1}(h,r,t)2O, we
aim to predict the labels of the remaining hidden triplets H , i.e., vH = {v(h,r,t)}(h,r,t)2H . We will
discuss how to generate the hidden triplets H later in Sec. 4.4.

This problem has been extensively studied in both traditional logic rule-based methods and recent
knowledge graph embedding methods. For logic rule-based methods, we mainly focus on one
representative approach, the Markov logic network. Essentially, both types of methods aim to model
the joint distribution of the observed and hidden triplets p(vO,vH). Next, we briefly introduce the
Markov logic network (MLN) [32] and the knowledge graph embedding methods [3, 42, 45].

3.2 Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed and the
hidden triplets, where the potential function is defined by the first-order logic. Some common logic
rules to encode domain knowledge include: (1) Composition Rules. A relation rk is a composition of
ri and rj means that for any three entities x, y, z, if x has relation ri with y, and y has relation rj with
z, then x has relation rk with z. Formally, we have 8x, y, z 2 E,v(x,ri,y) ^ v(y,rj ,z) ) v(x,rk,z).
(2) Inverse Rules. A relation rj is an inverse of ri indicates that for two entities x, y, if x has relation
ri with y, then y has relation rj with x. We can represent the rule as 8x, y 2 E,v(x,ri,y) ) v(y,rj ,x).
(3) Symmetric Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation
r with y, then y also has relation r with x. Formally, we have 8x, y 2 E,v(x,r,y) ) v(y,r,x). (4)
Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity pair x, y, if x and y
have relation ri, then they also have relation rj . Formally, we have 8x, y 2 E,v(x,ri,y) ) v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the entity
placeholders in the logic rule with real entities in knowledge graphs. For example, for a subre-
lation rule, 8x, y,v(x,Born in,y) ) v(x,Live in,y), two groundings in Gl can be v(Newton,Born in,UK) )
v(Newton,Live in,UK) and v(Einstein,Born in,German) ) v(Einstein,Live in,German). We see that the former one is
true while the latter one is false. To handle such uncertainty of logic rules, Markov logic networks
introduce a weight wl for each rule l, and then the joint distribution of all triplets is defined as follows:

p(vO,vH) =
1

Z
exp

0

@
X

l2L

wl

X

g2Gl

{g is true}

1

A =
1

Z
exp

 
X

l2L

wlnl(vO,vH)

!
, (1)

where nl is the number of true groundings of the logic rule l based on the values of vO and vH .

With such a formulation, predicting the missing triplets essentially becomes inferring the posterior dis-
tribution p(vH |vO). Exact inference is usually infeasible due to the complicated graph structures, and
hence approximation inference is often used such as MCMC [13] and loopy belief propagation [23].

3.3 Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods learn
embeddings of entities and relations with the observed facts vO, and then predict the missing facts
with the learned entity and relation embeddings. Formally, each entity e 2 E and relation r 2 R is
associated with an embedding xe and xr. Then the joint distribution of all the triplets is defined as:

p(vO,vH) =
Y

(h,r,t)2O[H

Ber(v(h,r,t)|f(xh,xr,xt)), (2)

3

= 𝜎(𝛾 − 𝐱$ + 𝐱% − 𝐱& ) 𝜎 is the sigmoid function, 𝛾 is a fixed margin 

47



Pros and Cons

• Pros
• Can be effectively and efficiently trained by SGD
• High recall of missing link prediction with entity and relation embeddings

• Cons
• Hard to leverage domain knowledge (logic rules)

48



Probabilistic Logic Neural Networks for
Reasoning (Qu and Tang, NeurIPS’19. )
• Towards combining Markov Logic Networks and knowledge graph 

embedding
• Leverage logic rules and handling their uncertainty
• Effective and efficient inference

• Define the joint distribution of facts with Markov Logic Network
• Optimization with variational EM
• Parametrize the variational distribution with knowledge graph embedding

methods

Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning.” In NeurIPS’2019.

49



pLogicNet

• Define the joint distribution of facts with an MLN

• Learning by maximizing the variational lower-bound of the log-
likelihood of observed facts

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

50



Inference

• Amortized mean-field variational inference
• Use knowledge graph embedding model to parameterize the variational

distribution

q✓ to minimize the KL divergence between q✓(vH) and pw(vH |vO). In the M-step, which is known
as the learning procedure, we fix q✓ and update pw to maximize the log-likelihood function of all the
triplets, i.e., Eq✓(vH)[log pw(vO,vH)]. Next, we introduce the details of both steps.

4.2 E-step: Inference Procedure

For inference, we aim to infer the posterior distribution of the hidden variables, i.e., pw(vH |vO). As
exact inference is intractable, we approximate the true posterior distribution with a mean-field [27]
variational distribution q✓(vH), in which each v(h,r,t) is inferred independently for (h, r, t) 2 H . To
further improve inference, we use amortized inference [11, 19], and parameterize q✓(v(h,r,t)) with a
knowledge graph embedding model. Formally, q✓(vH) is formulated as below:

q✓(vH) =
Y

(h,r,t)2H

q✓(v(h,r,t)) =
Y

(h,r,t)2H

Ber(v(h,r,t)|f(xh,xr,xt)), (5)

where Ber stands for the Bernoulli distribution, and f(·, ·, ·) is a scoring function defined on triplets
as introduced in Sec. 3.3. By minimizing the KL divergence between the variational distribution
q✓(vH) and the true posterior distribution pw(vH |vO), the optimal q✓(vH) is given by the fixed-point
condition as below (see appendix for proof):

log q✓(v(h,r,t)) = Eq✓(vMB(h,r,t))[log p(v(h,r,t)|vMB(h,r,t))] + const for all (h, r, t) 2 H, (6)

where MB(h, r, t) is the Markov blanket of (h, r, t), which contains the triplets that appear together
with (h, r, t) in any grounding of the logic rules. For example, from a grounding v(Newton,Born in,UK) )
v(Newton,Live in,UK), we can know both triplets are in the Markov blanket of each other.

Based on the Eq. (6), our goal becomes finding a distribution q✓ that satisfies the condition. However,
Eq. (6) involves the expectation with respect to q✓(vMB(h,r,t)). To simplify the condition, we estimate
the expectation by drawing a sample v̂MB(h,r,t) = {v̂(h0,r0,t0)}(h0,r0,t0)2MB(h,r,t). Specifically, for
each (h0, r0, t0) 2 MB(h, r, t), if it is observed, we set v̂(h0,r0,t0) = 1, and otherwise v̂(h0,r0,t0) ⇠
q✓(v(h0,r0,t0)). In this way, the right side of Eq. (6) is approximated as log pw(v(h,r,t)|v̂MB(h,r,t)),
and thus the optimality condition can be further simplified as q✓(v(h,r,t)) ⇡ pw(v(h,r,t)|v̂MB(h,r,t)).

Intuitively, for each hidden triplet (h, r, t), the knowledge graph embedding model predicts v(h,r,t)

through the entity and relation embeddings (i.e., q✓(v(h,r,t))), while the logic rules make the
prediction by utilizing the triplets connected with (h, r, t) (i.e., pw(v(h,r,t)|v̂MB(h,r,t))). If any
triplet (h0, r0, t0) connected with (h, r, t) is unobserved, we simply fill in v(h0,r0,t0) with a sample
v̂(h0,r0,t0) ⇠ q✓(v(h0,r0,t0)). Then, the simplified optimality condition tells us that for the optimal
knowledge graph embedding model, it should reach a consensus with the logic rules on the distribution
of v(h,r,t) for every (h, r, t), i.e., q✓(v(h,r,t)) ⇡ pw(v(h,r,t)|v̂MB(h,r,t)).

To learn the optimal q✓, we use a method similar to [33]. We start by computing pw(v(h,r,t)|v̂MB(h,r,t))
with the current q✓. Then, we fix the value as target, and update q✓ to minimize the reverse KL
divergence of q✓(v(h,r,t)) and the target p(v(h,r,t)|v̂MB(h,r,t)), leading to the following objective:

O✓,U =
X

(h,r,t)2H

Ep(v(h,r,t)|v̂MB(h,r,t))[log q✓(v(h,r,t))]. (7)

To optimize this objective, we first compute p(v(h,r,t)|v̂MB(h,r,t)) for each hidden triplet (h, r, t).
If the probability of p(v(h,r,t) = 1|v̂MB(h,r,t)) is greater than 0.5, then we treat (h, r, t) as a pos-
itive example and train the knowledge graph embedding model to maximize the log-likelihood
log q✓(v(h,r,t) = 1). Otherwise the triplet is treated as a negative example. In this way, the knowl-
edge captured by logic rules can be effectively distilled into the knowledge graph embedding model.

We can also use the observed triplets in O as positive examples to enhance the knowledge graph
embedding model. Therefore, we also optimize the following objective function:

O✓,L =
X

(h,r,t)2O

log q✓(v(h,r,t) = 1). (8)

By adding Eq. (7) and (8), we obtain the overall objective function for q✓, i.e., O✓ = O✓,U +O✓,L.

5

51



Learning

• Optimize pseudo-likelihood function
• Update the weights of logic rules

4.3 M-step: Learning Procedure

In the learning procedure, we will fix q✓, and update the weights of logic rules w by maximizing
the log-likelihood function, i.e., Eq✓(vH)[log pw(vO,vH)]. However, directly optimizing the log-
likelihood function can be difficult, as we need to deal with the partition function, i.e., Z in Eq. (3).
Therefore, we follow existing studies [20, 32] and instead optimize the pseudolikelihood function [1]:

`PL(w) , Eq✓(vH)[
X

h,r,t

log pw(v(h,r,t)|vO[H\(h,r,t))] = Eq✓(vH)[
X

h,r,t

log pw(v(h,r,t)|vMB(h,r,t))],

where the equation is derived from the independence property of the Markov logic network in Eq. (3).

We optimize w through the gradient descent algorithm. For each expected conditional distribution
Eq✓(vH)[log pw(v(h,r,t)|vMB(h,r,t))], suppose v(h,r,t) connects with vMB(h,r,t) through a set of rules.
For each of such rules l, the derivative with respect to wl is computed as (see appendix for proof):

Owl
Eq✓(vH)[log pw(v(h,r,t)|vMB(h,r,t))] ' y(h,r,t) � pw(v(h,r,t) = 1|v̂MB(h,r,t)) (9)

where y(h,r,t) = 1 if (h, r, t) is an observed triplet and y(h,r,t) = q✓(v(h,r,t) = 1) if (h, r, t) is a
hidden one. v̂MB(h,r,t) = {v̂(h0,r0,t0)}(h0,r0,t0)2MB(h,r,t) is a sample from q✓. For each (h0, r0, t0) 2
MB(h, r, t), v̂(h0,r0,t0) = 1 if (h0, r0, t0) is observed, and otherwise v̂(h0,r0,t0) ⇠ q✓(v(h0,r0,t0)).

Intuitively, for each observed triplet (h, r, t) 2 O, we seek to maximize pw(v(h,r,t) = 1|v̂MB(h,r,t)).
For each hidden triplet (h, r, t) 2 H , we treat q✓(v(h,r,t) = 1) as target for updating pw(v(h,r,t) =
1|v̂MB(h,r,t)). In this way, the knowledge graph embedding model q✓ essentially provides extra
supervision to benefit learning the weights of logic rules.

4.4 Optimization and Prediction

During training, we iteratively perform the E-step and the M-step until convergence. Note that there
are a huge number of possible hidden triplets (i.e., |E| ⇥ |R| ⇥ |E| � |O|), and handling all of
them is impractical for optimization. Therefore, we only include a small number of triplets in the
hidden set H . Specifically, an unobserved triplet (h, r, t) is added to H if we can find a grounding
[premise] ) [hypothesis], where the hypothesis is (h, r, t) and the premise only contains triplets
in the observed set O. In practice, we can construct H with brute-force search as in [15].

After training, according to the fixed-point condition given in Eq. (6), the posterior distribution
pw(v(h,r,t)|vO) for (h, r, t) 2 H can be characterized by either q✓(v(h,r,t)) or pw(v(h,r,t)|v̂MB(h,r,t))
with v̂MB(h,r,t) ⇠ q✓(vMB(h,r,t)). Although we try to encourage the consensus of pw and q✓ during
training, they may still give different predictions as different information is used. Therefore, we use
both of them for prediction, and we approximate the true posterior distribution pw(v(h,r,t)|vO) as:

pw(v(h,r,t)|vO) ⇡
1

2

�
q✓(v(h,r,t)) + pw(v(h,r,t)|v̂MB(h,r,t))

�
. (10)

In practice, we also expect to infer the plausibility of the triplets outside H . For each of such triplets
(h, r, t), we can still compute q✓(v(h,r,t)) through the learned embeddings, but we cannot make
predictions with the logic rules, so we simply replace pw(v(h,r,t) = 1|v̂MB(h,r,t)) with 0.5 in Eq. 10.

5 Experiment

5.1 Experiment Settings

Datasets. In experiments, we evaluate the pLogicNet on four benchmark datasets. The FB15k [3]
and FB15k-237 [40] datasets are constructed from Freebase [2]. WN18 [3] and WN18RR [8] are
constructed from WordNet [22]. The detailed statistics of the datasets are summarized in appendix.

Evaluation Metrics. We compare different methods on the task of knowledge graph reasoning. For
each test triplet, we mask the head or the tail entity, and let each compared method predict the masked
entity. Following existing studies [3, 45], we use the filtered setting during evaluation. The Mean
Rank (MR), Mean Reciprocal Rank (MRR) and Hit@K (H@K) are treated as the evaluation metrics.

6

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4

52



Performance of Link Prediction

Compared Algorithms. We compare with both the knowledge graph embedding methods and rule-
based methods. For the knowledge graph embedding methods, we choose five representative methods
to compare with, including TransE [3], DistMult [45], HolE [26], ComplEx [41] and ConvE [8]. For
the rule-based methods, we compare with the Markov logic network (MLN) [32] and the Bayesian
Logic Programming (BLP) method [7], which model logic rules with Markov networks and Bayesian
networks respectively. Besides, we also compare with RUGE [15] and NNE-AER [9], which are
hybrid methods that combine knowledge graph embedding and logic rules. As only the results on the
FB15k dataset are reported in the RUGE paper, we only compare with RUGE on that dataset. For
our approach, we consider two variants, where pLogicNet uses only q✓ to infer the plausibility of
unobserved triplets during evaluation, while pLogicNet⇤ uses both q✓ and pw through Eq. (10).

Experimental Setup of pLogicNet. To generate the candidate rules in the pLogicNet, we search
for all the possible composition rules, inverse rules, symmetric rules and subrelations rules from the
observed triplets, which is similar to [10, 15]. Then, we compute the empirical precision of each
rule, i.e. pl =

|Sl\O|
|Sl| , where Sl is the set of triplets extracted by the rule l and O is the set of the

observed triplets. We only keep the rules whose empirical precision is more than 0.1. TransE [3] is
used as the knowledge graph embedding model to parameterize q✓ by default, and we use the same
hyperparameters as in [37] during training, which can be found in appendix. We update the weights
of logic rules with gradient descent, and the learning rate is fixed as 0.0001.

5.2 Results

5.2.1 Comparing pLogicNet with Other Methods

Table 1: Results of reasoning on the FB15k and WN18 datasets. The results of the KGE and the
Hybrid methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm FB15k WN18
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [3] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [17] 42 0.798 - - 89.3 655 0.797 - - 94.6

HolE [26] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [41] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7

ConvE [8] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6

Rule-based BLP [7] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0
MLN [32] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9

Hybrid RUGE [15] - 0.768 70.3 81.5 86.5 - - - - -
NNE-AER [9] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8

Ours pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94.4 95.7
pLogicNet⇤ 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8

Table 2: Results of reasoning on the FB15k-237 and WN18RR datasets. The results of the KGE
methods except for TransE are directly taken from the corresponding papers. H@K is in %.

Category Algorithm FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE
TransE [3] 181 0.326 22.9 36.3 52.1 3410 0.223 1.3 40.1 53.1

DistMult [17] 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx [41] 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ConvE [8] 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

Rule-based BLP [7] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8
MLN [32] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1

Ours pLogicNet 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet⇤ 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7

The main results on the four datasets are presented in Tab. 1 and 2. We can see that the pLogicNet
significantly outperforms the rule-based methods, as pLogicNet uses a knowledge graph embedding
model to improve inference. pLogicNet also outperforms all the knowledge graph embedding
methods in most cases, where the improvement comes from the capability of exploring the knowledge
captured by the logic rules. Moreover, our approach is superior to both hybrid methods (RUGE and
NNE-AER) under most metrics, as it can handle the uncertainty of logic rules in a principled way.

7

• Datasets: benchmark knowledge graphs
• FB15K, WN18, FB15K-237, WN18-RR

• Logic rules:
• Composition rules (e.g., Father of Father is GrandFather)
• Inverse rules (e.g., Husband and Wife)
• Symmetric rules (e.g., Similar)
• Subrelation rules (e.g., Man => Person)

53



ExpressGNN (Zhang et al. 2019)

• Inference with graph neural networks
Published as a conference paper at ICLR 2020

Variational EM

Posterior
Encoding

Likelihood
Decoding

GNNMLN

Knowledge
Graph

!"(⋅)

formula potential predicate posterior

Figure 1: Overview of our method for combining MLN and GNN using the variational EM framework.

• Efficient inference and learning: ExpressGNN can be viewed as the inference network for MLN,
which scales up MLN inference to much larger knowledge graph problems.

• Combining logic rules and data supervision: ExpressGNN can leverage the prior knowledge
encoded in logic rules, as well as the supervision from graph structured data.

• Compact and expressive model: ExpressGNN may have small number of parameters, yet it is
sufficient to represent mean-field distributions in MLN.

• Capability of zero-shot learning: ExpressGNN can deal with the zero-shot learning problem where
the target predicate has few or zero labeled instances.

2 RELATED WORK

Statistical relational learning. There is an extensive literature relating the topic of logic reasoning.
Here we only focus on the approaches that are most relevant to statistical relational learning on
knowledge graphs. Logic rules can compactly encode the domain knowledge and complex depen-
dencies. Thus, hard logic rules are widely used for reasoning in earlier attempts, such as expert
systems (Ignizio, 1991) and inductive logic programming (Muggleton & De Raedt, 1994). However,
hard logic is very brittle and has difficulty in coping with uncertainty in both the logic rules and the
facts in knowledge graphs. Later studies have explored to introduce probabilistic graphical model in
logic reasoning, seeking to combine the advantages of relational and probabilistic approaches. Repre-
sentative works including Relational Markov Networks (RMNs; Taskar et al. (2007)) and Markov
Logic Networks (MLNs; Richardson & Domingos (2006)) were proposed in this background.

Markov Logic Networks. MLNs have been widely studied due to the principled probabilistic model
and effectiveness in a variety of reasoning tasks, including entity resolution (Singla & Domingos,
2006a), social networks (Zhang et al., 2014), information extraction (Poon & Domingos, 2007), etc.
MLNs elegantly handle the noise in both logic rules and knowledge graphs. However, the inference
and learning in MLNs is computationally expensive due to the exponential cost of constructing the
ground Markov network and the NP-complete optimization problem. This hinders MLNs to be applied
to industry-scale applications. Many works appear in the literature to improve the original MLNs in
both accuracy (Singla & Domingos, 2005; Mihalkova & Mooney, 2007) and efficiency (Singla &
Domingos, 2006b; 2008; Poon & Domingos, 2006; Khot et al., 2011; Bach et al., 2015). Nevertheless,
to date, MLNs still struggle to handle large-scale knowledge bases in practice. Our framework
ExpressGNN overcomes the scalability challenge of MLNs by efficient stochastic training algorithm
and compact posterior parameterization with graph neural networks.

Graph neural networks. Graph neural networks (GNNs; Dai et al. (2016); Kipf & Welling (2017))
can learn effective representations of nodes by encoding local graph structures and node attributes.
Due to the compactness of model and the capability of inductive learning, GNNs are widely used
in modeling relational data (Schlichtkrull et al., 2018; Battaglia et al., 2018). Recently, Qu et al.
(2019) proposed Graph Markov Neural Networks (GMNNs), which employs GNNs together with
conditional random fields to learn object representations. These existing works are simply data-driven,
and not able to leverage the domain knowledge or human prior encoded in logic rules. To the best

2



Source Codes

• pLogicNet: https://github.com/DeepGraphLearning/pLogicNet
• ExpressGNN: https://github.com/expressGNN/ExpressGNN

https://github.com/DeepGraphLearning/pLogicNet
https://github.com/expressGNN/ExpressGNN


Roadmap

• Part I: Reasoning in Continuous Space

• Part II: Symbolic Logic Reasoning

• Part III: Neural-Symbolic Logic Reasoning

• Part IV: Logic Rule Induction/Learning



Learning Logic Rules

• Methods introduced so far:
• Require given logic rules as input
• Unable to discover logic rules automatically

• Learning logic rules:
• Learn useful logic rules from existing knowledge graphs

• Foundation:
• Inductive logic programming



Inductive Logic Programming

• Problem description:
• Given: background facts 𝐵, positive examples 𝑃, negative examples 𝑁
• Output: first-order logic rules 𝐻 such that 𝐵 ∧ 𝐻 ⊨ 𝑃 𝐵 ∧ 𝐻 ⊭ 𝑁
• Applying 𝐻 to 𝐵 yields all positive examples in 𝑃
• Applying 𝐻 to 𝐵 yields none of negative examples in 𝑁

• Key idea: generate-and-test
• Generate a set of candidate logic rules for reasoning
• Choose the most useful logic rules from all candidates



Inductive Logic Programming

• Example:
• Background facts: Father 𝑎, 𝑏 Father 𝑏, 𝑐 Father 𝑐, 𝑑
• Positive facts: GrandFather 𝑎, 𝑐
• Negative facts: GrandFather 𝑎, 𝑑

Rule Template

∀𝑋, 𝑌, 𝑍 Grandfather 𝑋, 𝑌 ←
Father 𝑋, 𝑍 ∧ Father 𝑍, 𝑌

∀𝑋, 𝑌, 𝑍 Grandfather 𝑋, 𝑌 ←
Father 𝑋, 𝑈 ∧ Father 𝑈, 𝑉 ∧ Father 𝑉, 𝑌

Useful Rule

Unuseful Rule

Consistent with
pos/neg facts

Conflict with
pos/neg facts



Limitations of Traditional ILP

• Inability to handle noisy, erroneous or ambiguous data
• E.g., mislabeled data in the positive or negative examples

• Neural ILP: combines the advantages of ILP and neural network-based
systems:
• data efficient
• able to learn explicit human-readable symbolic rules
• Robust to noisy and ambiguous data



Differentiable ILP (Evans et al. 2017)

• Key ideas:

• Generate candidate logic rules according to pre-defined templates

• Assign a scalar weight to each candidate rule

• Perform differentiable forward chaining for reasoning

• Choose rules with large weights as useful ones



Differentiable ILP (Evans et al. 2017)

• A differentiable extension of inductive logic programming:
• Inductive logic programming:
• The value of each ground atom is discrete (true/false)
• The logic operators are discrete (¬ ∧ ∨)

• Differentiable ILP:
• Approximate the value of ground atoms with a continuous value in 0,1
• Approximate logic operators with differentiable operators
• 𝑥 ∨ 𝑦 ≈ max 𝑥, 𝑦 or   𝑥 ∨ 𝑦 ≈ 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦 with 𝑥, 𝑦 ∈ 0,1
• 𝑥 ∧ 𝑦 = 𝑥 ⋅ 𝑦
• ¬ 𝑥 = 1 − 𝑥



Differentiable ILP (Evans et al. 2017)

• Apply forward chaining and all the candidate logic rules to the given 
facts, yielding a collection of new facts and predicted values.
• Example:
• Rules:

• R1: Nationality 𝑋, 𝑌 ← BornIn 𝑋, 𝑌 R2: Nationality 𝑋, 𝑌 ← LiveIn 𝑋, 𝑌
• Given facts: BornIn 𝐵𝑜𝑏, 𝐶𝑎𝑛𝑎𝑑𝑎 LiveIn 𝐵𝑜𝑏, 𝑈𝑆𝐴
• New facts: Nationality 𝐵𝑜𝑏, 𝐶𝑎𝑛𝑎𝑑𝑎 Nationality 𝐵𝑜𝑏, 𝑈𝑆𝐴

• The value of each new fact is a function of rule weights
• value Nationality 𝐵𝑜𝑏, 𝐶𝑎𝑛𝑎𝑑𝑎 = 𝑓" 𝑤
• value Nationality 𝐵𝑜𝑏, 𝑈𝑆𝐴 = 𝑓# 𝑤



Differentiable ILP (Evans et al. 2017)

• Adjust rule weights to minimize the difference between the ground-
truth atom value and predicted atom value
• Example:
• Positive example (the value is 1): Nationality 𝐵𝑜𝑏, 𝐶𝑎𝑛𝑎𝑑𝑎
• Negative example (the value is 0): Nationality 𝐵𝑜𝑏, 𝑈𝑆𝐴
• Predicted values:

• value Nationality 𝐵𝑜𝑏, 𝐶𝑎𝑛𝑎𝑑𝑎 = 𝑓! 𝑤
• value Nationality 𝐵𝑜𝑏, 𝑈𝑆𝐴 = 𝑓" 𝑤

• Cross-entropy loss:
• ℓ 𝑤 = − log 𝑓! 𝑤 + log 1 − 𝑓" 𝑤



Neural LP (Yang et al. 2017)

• Key ideas:

• Generate chain-like logic rules up to a certain length as candidates

• Assign a weight to each candidate with an attention mechanism

• Integrate all the candidate logic rules for reasoning

• Choose rules with large weights as useful ones



Neural LP (Yang et al. 2017)

• Chain-like logic rules:

• 𝛼 ∈ 0,1 : the confidence associated with this rule
• 𝑛: the length of this rule

• Example:
• Nationality 𝑋, 𝑌 ← LiveIn 𝑋, 𝑍 ∧ CityOf 𝑍, 𝑌
• GrandFather 𝑋, 𝑌 ← Father 𝑋, 𝑍 ∧ Father 𝑍, 𝑌

𝛼 query Y, X ← R" Y, Z" ∧ ⋯∧ Rb Zb, X



Neural LP (Yang et al. 2017)

• Reasoning by matrix multiplication:
• Assign an interger index to each entity
• Let vc be a one-hot vector with the entry of entity i being 1
• Let Md be a matrix in 0,1 e × e such that the 𝑖, 𝑗 -entry is 1 if and only 

if R i, j is a given fact

• During reasoning, for a rule R Y, X ← P Y, Z ∧ Q Z, X and query R ? , X , 
the answer can be obtained by:
• Computing s = Mf ⋅ Mg ⋅ vh
• Retrieving entities whose entries are nonzeros as answers



Neural LP (Yang et al. 2017)

• Integrating multiple rules for reasoning:
• Consider:
• A query R ? , X
• A set of logic rules 𝛼i, 𝛽i = R Y, X ← R" Y, Z" ∧ ⋯∧ Rb Zb, Y i

• Apply backward chaining for reasoning:
• Each rule 𝑙 gives a score over all entities si = 𝛼i ∏d,∈klmn o- Md, vh
• Combing all rules yields s = ∑i si = ∑i 𝛼i ∏d,∈klmn o- Md, vh
• The value of the 𝑖-entry in s is the score received by entity i



Neural LP (Yang et al. 2017)

• Maintain a set of auxiliary memory vectors 𝐮n
• Memory attention vector 𝐛n
• Operator attention vector 𝐚n

Figure 2: The neural controller system.

3.3 Learning the logical rules

We will now describe the differentiable rule learning process, including learnable parameters and
the model architecture. As shown in Equation 2, for each query, we need to learn the set of rules
that imply it and the confidences associated with these rules. However, it is difficult to formulate a
differentiable process to directly learn the parameters and the structure {↵l,�l}. This is because each
parameter is associated with a particular rule, and enumerating rules is an inherently discrete task. To
overcome this difficulty, we observe that a different way to write Equation 2 is to interchange the
summation and product, resulting the following formula with a different parameterization,

TY

t=1

|R|X

k

aktMRk (5)

where T is the max length of rules and |R| is the number of relations in the knowledge base. The key
parameterization difference between Equation 2 and Equation 5 is that in the latter we associate each
relation in the rule with a weight. This combines the rule enumeration and confidence assignment.

However, the parameterization in Equation 5 is not sufficiently expressive, as it assumes that all rules
are of the same length. We address this limitation in Equation 6-8, where we introduce a recurrent
formulation similar to Equation 3.

In the recurrent formulation, we use auxiliary memory vectors ut. Initially the memory vector is set
to the given entity vx. At each step as described in Equation 7, the model first computes a weighted
average of previous memory vectors using the memory attention vector bt. Then the model “softly”
applies the TensorLog operators using the operator attention vector at. This formulation allows the
model to apply the TensorLog operators on all previous partial inference results, instead of just the
last step’s.

u0 = vx (6)

ut =

|R|X

k

aktMRk

 
t�1X

⌧=0

b⌧t u⌧

!
for 1  t  T (7)

uT+1 =
TX

⌧=0

b⌧T+1u⌧ (8)

Finally, the model computes a weighted average of all memory vectors, thus using attention to select
the proper rule length. Given the above recurrent formulation, the learnable parameters for each
query are {at | 1  t  T} and {bt | 1  t  T + 1}.

We now describe a neural controller system to learn the operator and memory attention vectors.
We use recurrent neural networks not only because they fit with our recurrent formulation, but also
because it is likely that current step’s attentions are dependent on previous steps’. At every step
t 2 [1, T + 1], the network predicts operator and memory attention vectors using Equation 9, 10,

4

Figure 2: The neural controller system.

3.3 Learning the logical rules

We will now describe the differentiable rule learning process, including learnable parameters and
the model architecture. As shown in Equation 2, for each query, we need to learn the set of rules
that imply it and the confidences associated with these rules. However, it is difficult to formulate a
differentiable process to directly learn the parameters and the structure {↵l,�l}. This is because each
parameter is associated with a particular rule, and enumerating rules is an inherently discrete task. To
overcome this difficulty, we observe that a different way to write Equation 2 is to interchange the
summation and product, resulting the following formula with a different parameterization,

TY

t=1

|R|X

k

aktMRk (5)

where T is the max length of rules and |R| is the number of relations in the knowledge base. The key
parameterization difference between Equation 2 and Equation 5 is that in the latter we associate each
relation in the rule with a weight. This combines the rule enumeration and confidence assignment.

However, the parameterization in Equation 5 is not sufficiently expressive, as it assumes that all rules
are of the same length. We address this limitation in Equation 6-8, where we introduce a recurrent
formulation similar to Equation 3.

In the recurrent formulation, we use auxiliary memory vectors ut. Initially the memory vector is set
to the given entity vx. At each step as described in Equation 7, the model first computes a weighted
average of previous memory vectors using the memory attention vector bt. Then the model “softly”
applies the TensorLog operators using the operator attention vector at. This formulation allows the
model to apply the TensorLog operators on all previous partial inference results, instead of just the
last step’s.

u0 = vx (6)

ut =

|R|X

k

aktMRk

 
t�1X

⌧=0

b⌧t u⌧

!
for 1  t  T (7)

uT+1 =
TX

⌧=0

b⌧T+1u⌧ (8)

Finally, the model computes a weighted average of all memory vectors, thus using attention to select
the proper rule length. Given the above recurrent formulation, the learnable parameters for each
query are {at | 1  t  T} and {bt | 1  t  T + 1}.

We now describe a neural controller system to learn the operator and memory attention vectors.
We use recurrent neural networks not only because they fit with our recurrent formulation, but also
because it is likely that current step’s attentions are dependent on previous steps’. At every step
t 2 [1, T + 1], the network predicts operator and memory attention vectors using Equation 9, 10,

4

and 11. The input is the query for 1  t  T and a special END token when t = T + 1.
ht = update (ht�1, input) (9)
at = softmax (Wht + b) (10)

bt = softmax
�
[h0, . . . ,ht�1]

Tht

�
(11)

The system then performs the computation in Equation 7 and stores ut into the memory. The memory
holds each step’s partial inference results, i.e. {u0, . . . ,ut, . . . ,uT+1}. Figure 2 shows an overview
of the system. The final inference result u is just the last vector in memory, i.e. uT+1. As discussed
in Equation 4, the objective is to maximize vT

y u. In particular, we maximize logvT
y u because the

nonlinearity empirically improves the optimization performance. We also observe that normalizing
the memory vectors (i.e. ut) to have unit length sometimes improves the optimization.

To recover logical rules from the neural controller system, for each query we can write rules and their
confidences {↵l,�l} in terms of the attention vectors {at,bt}. Based on the relationship between
Equation 3 and Equation 6-8, we can recover rules by following Equation 7 and keep track of the
coefficients in front of each matrix MRk . The detailed procedure is presented in Algorithm 1.

Algorithm 1 Recover logical rules from attention vectors

Input: attention vectors {at | t = 1, . . . , T} and {bt | t = 1, . . . , T + 1}
Notation: Let Rt = {r1, . . . , rl} be the set of partial rules at step t. Each rule rl is represented by
a pair of (↵, �) as described in Equation 1, where ↵ is the confidence and � is an ordered list of
relation indexes.
Initialize: R0 = {r0} where r0 = (1, ( )).
for t 1 to T + 1 do

Initialize: cRt = ;, a placeholder for storing intermediate results.
for ⌧  0 to t� 1 do

for rule (↵, �) in R⌧ do
Update ↵0  ↵ · b⌧t . Store the updated rule (↵0, �) in cRt.

if t  T then
Initialize: Rt = ;
for rule (↵, �) in cRt do

for k  1 to |R| do
Update ↵0  ↵ · akt , �0  � append k. Add the updated rule (↵0, �0) to Rt.

else
Rt = cRt

return RT+1

4 Experiments

To test the reasoning ability of Neural LP, we conduct experiments on statistical relation learning, grid
path finding, knowledge base completion, and question answering against a knowledge base. For all
the tasks, the data used in the experiment are divided into three files: facts, train, and test. The facts
file is used as the knowledge base to construct TensorLog operators {MRk | Rk 2 R}. The train and
test files contain query examples query(head,tail). Unlike in the case of learning embeddings,
we do not require the entities in train and test to overlap, since our system learns rules that are entity
independent.

Our system is implemented in TensorFlow and can be trained end-to-end using gradient methods.
The recurrent neural network used in the neural controller is long short-term memory [9], and the
hidden state dimension is 128. The optimization algorithm we use is mini-batch ADAM [11] with
batch size 64 and learning rate initially set to 0.001. The maximum number of training epochs is 10,
and validation sets are used for early stopping.

4.1 Statistical relation learning

We conduct experiments on two benchmark datasets [12] in statistical relation learning. The first
dataset, Unified Medical Language System (UMLS), is from biomedicine. The entities are biomedical

5



Neural LP (Yang et al. 2017)

• Main results:
• Neural LP outperforms many knowledge graph embedding methods



Neural LP (Yang et al. 2017)

• Case study:
• The learned logic rules are quite intuitive



Neural LP (Yang et al. 2017)

• Inductive knowledge graph reasoning (Hit@10):
• The learned rules can be used in other knowledge graphs for reasoning



Limitation

• Idea:
• Consider a large number of candidate logic rules
• Learn the weights of these rules jointly

• Limitation:
• High dimensionality
• The weights may not reflect the important of rules precisely



RNNLogic (Qu and Chen et al. 2020)

• A new rule learning approach RNNLogic:
• Treating a set of logic rules as a latent variable
• A rule generator for generating candidate logic rules (prior)
• A reasoning predictor with logic rules (likelihood)

• RNNLogic is able to effectively perform search in the search space
• An effective EM algorithm for optimizing RNNLogic
• Outperforms many competitive rule learning methods and knowledge 

graph embedding methods on several benckmark datasets

Qu, Meng*, Chen, Junkun*, Xhonneux Louis-Pascal, Bengio Yoshua, and Tang, Jian. "RNNLogic: Learning Logic 
Rules for Reasoning on Knowledge Graphs." arXiv preprint arXiv:2010.04029 (2020).



Chain-like Rules

• Rules with a chain structure:
• r 𝑋p, 𝑋i ← r" 𝑋p, 𝑋" ∧ r# 𝑋", 𝑋# ∧ ⋯∧ ri 𝑋i!", 𝑋i

• Example:
• Nationality 𝑋, 𝑌 ← LiveIn 𝑋, 𝑍 ∧ CityOf 𝑍, 𝑌
• GrandFather 𝑋, 𝑌 ← Father 𝑋, 𝑍 ∧ Father 𝑍, 𝑌

• Chain-like rules capture:
• Composition
• Symmetric relations   r 𝑋, 𝑌 ← r!" 𝑋, 𝑌 with r!" the inverse relation of 𝑟
• Inverse relations r 𝑋, 𝑌 ← rq!" 𝑋, 𝑌 with rq!" the inverse relation of rq



Probabilistic Formalization

• Problem:
• Input: a query 𝒒 = ℎ, r, ? , a background knowledge graph 𝒢
• Output: the answer 𝒂 = 𝑡
• The goal is to model 𝑝 𝒂 𝒢, 𝒒

• Probabilistic formalization:
• Treat a set of chain-like logic rules as a latent variable 𝒛

• Objective function: max
r,s

𝒪 𝑤, 𝜃 = 𝔼 𝒢,𝒒,𝒂 ∼x./0/ log 𝑝r,s 𝒂 𝒢, 𝒒

𝑝&,( 𝒂 𝒢, 𝒒 =B
𝒛

𝑝& 𝒂 𝒢, 𝒒, 𝒛 𝑝( 𝒛 𝒒 = 𝔼*! 𝒛 𝒒 𝑝& 𝒂 𝒢, 𝒒, 𝒛

Prior from a Rule Generator 𝑝(Likelihood from a Reasoning Predictor 𝑝&



Rule Generator 𝒑𝜽 𝒛 𝒒

• Each chain-like rule can be represented as a sequence of relations:
• r 𝑋p, 𝑋i ← r" 𝑋p, 𝑋" ∧ r# 𝑋", 𝑋# ∧ ⋯∧ ri 𝑋i!", 𝑋i
• r, r", r#, … , ri, r{|} where r{|} is a special ending relation

• Such sequences can be effectively generated by an RNN
• The probability of each rule can be simultaneously computed
• 𝑝 𝑟𝑢𝑙𝑒 = RNNs 𝑟𝑢𝑙𝑒 r

• For a query 𝒒 = ℎ, r, ? , define the prior over a set of rules 𝒛 as:
• 𝑝s 𝒛 𝒒 = Mu 𝒛 𝑁, RNNs ⋅ r where Mu is multinomial distribution
• Generative process of �𝒛 ∼ 𝑝s 𝒛 𝒒 :
• Generate 𝑁 chain-like rules with RNNs, form �𝒛 with these rules.



Reasoning Predictor 𝒑𝒘 𝒂 𝒢, 𝒒, 𝒛

• For each query 𝒒 = ℎ, r, ? , we can use rules in 𝒛 to get a search tree:
• Query: 𝒒 = Bob, Nationality, ?
• Logic rules in 𝒛:

• R!: Nationality ← BornIn ∧ CapitalOf R": Nationality ← Visited ∧ CityOf

Bob

Paris

Lyon

France

Montreal Canada

NYC USA

BornIn
CapitalOf

Visited CityOf

Visited

Visited

CityOf

CityOf

Each logic rule finds some candidate answers

R+

R,

France

Canada

USA



Reasoning Predictor 𝒑𝒘 𝒂 𝒢, 𝒒, 𝒛

• Assign a score to each candidate answer according to the 
corresponding logic rules:
• Bob → R": BornIn ⋀ CapitalOf → France
• Bob → R#: Visited ⋀ CityOf → France

Score France = 𝜓& R+ 𝜙& Bob, BornIn, CapitalOf, France + 𝜓& R, 𝜙& Bob, Visited, CityOf, France

Scalar weight of each rule Score of each relational path, either a constant or computed with embeddings

𝑝& 𝒂 = France 𝒢, 𝒒, 𝒛 = R+, R, =
exp Score France

exp Score France + exp Score Canada + exp Score USA

Softmax over all candidate answers



Optimization

• An EM algorithm:

• In each iteration:
• Explore a set of logic rules �𝒛 from the rule generator 𝑝s
• E-step: Identify a subset of important rules based on posterior 𝑝s,r 𝒛q 𝒢, 𝒒, 𝒂
• M-step: Update 𝑝s and 𝑝r according to the selected important rules

Reasoning Predictor
!!(#|%, ', ()

Query
' = (ℎ, ,, ? )

Rule Generator
!"((|')

Logic Rules
(.

Knowledge Graph
%

Answer
# = /

Important Logic Rules
(.# ∼ !",! (# %, ',#

Prior Likelihood



Optimization E-step

• Goal of E-step:
• Identify a set of most important rules

• Posterior inference:
• Compute the posterior distribution (𝒛q ⊂ �𝒛 is a subset of all the generated rules):

• Infer �𝒛q = argmax
𝒛1

𝑝s,r 𝒛q 𝒢, 𝒒, 𝒂 as the most important rules

• A set of logic rules with the maximum posterior probability

𝑝s,r 𝒛q 𝒢, 𝒒, 𝒂 ∝ 𝑝r 𝒂 𝒢, 𝒒, 𝒛q 𝑝s 𝒛q 𝒒

Likelihood from 𝑝& Prior from 𝑝(Posterior



Optimization E-step

• Approximation:
• For a query 𝒒 = ℎ, r, ? and answer 𝒂 = 𝑡, compute 𝐻 𝑟𝑢𝑙𝑒 for each 𝑟𝑢𝑙𝑒 ∈ �𝒛:

• 𝐻 𝑟𝑢𝑙𝑒 reflects how important each 𝑟𝑢𝑙𝑒 is for a pair of 𝒒, 𝒂
• �𝒛q can be formed by 𝐾 rules with the maximum 𝐻 𝑟𝑢𝑙𝑒

𝐻 𝑟𝑢𝑙𝑒 = score 𝑡 𝑟𝑢𝑙𝑒 −
1
𝒜 B

-∈𝒜

score 𝑒 𝑟𝑢𝑙𝑒 + logRNN( 𝑟𝑢𝑙𝑒 𝑟

The score that 𝑟𝑢𝑙𝑒 assigns to the correct 
answer in the reasoning predictor 

The mean score that 𝑟𝑢𝑙𝑒 assigns to all 
candidate answers in the reasoning predictor 

Prior probability of 𝑟𝑢𝑙𝑒
from the rule generator



Optimization M-step

• Goal of M-step:
• Use the identified important rules �𝒛q to update the reasoning predictor 𝑝r and 

rule generator 𝑝s
• For each query 𝒒 = ℎ, r, ? and answer 𝒂 = 𝑡:
• Reasoning predictor:
• Maximize log 𝑝r 𝒂 = 𝑡 𝒢, 𝒒, �𝒛q

• Rule generator:
• Maximize log 𝑝s �𝒛q 𝒒 = ∑%�i�∈�𝒛1 log RNNs 𝑟𝑢𝑙𝑒 𝑟

Increase the probability of each identified important logic rule



Experimental Setup

• Data:
• A set of ℎ, 𝑟, 𝑡 -triplets 𝒯

• Training:
• Randomly sample a ℎ, 𝑟, 𝑡 ∈ 𝒯
• Form the question and answer as 𝒒 = ℎ, r, ? and 𝒂 = 𝑡
• Form the background knowledge graph as 𝒢 = 𝒯 ∖ (ℎ, 𝑟, 𝑡)
• Treat 𝒢, 𝒒, 𝒂 as each training instance

• Testing:
• Form the background knowledge graph as 𝒢 = 𝒯



Main Results on FB15k-237 and WN18RR

• RNNLogic outperforms all rule learning methods
• RNNLogic achieves comparable results to state-of-the-art knowledge 

graph embedding methods



Main Results on Kinship and UMLS

• RNNLogic outperforms all the methods
• RNNLogic achieves comparable results to state-of-the-art knowledge 

graph embedding methods even without using embedding in predictors



Performace w.r.t. the Number of Rules

• Generate different numbers of logic rules with different methods
• Train reasoning predictors with these rules to evaluate the results
• RNNLogic achieves competitive results even with 10 rules per relation



Case Study

• The logic rules generated by RNNLogic are meaningful and diverse
• Rule 1 is a subrelation rule
• Rule 3&4 are two-hop compositional rules
• Others have more complicated forms



More Examples of Learned Rules



Beyond Chain-like Rules

• Tree-like rules:
• Learn to Explain Efficiently via Neural Logic 

Inductive Learning
• (Yang and Song, 2020)

• Graph-lile rules:
• Differentiable Learning of Graph-like Logical 

Rules from Knowledge Graphs
• (ICLR 2021 anomalous submission)

Under review as a conference paper at ICLR 2021

X

Z1

Y

X Input Entity Target EntityY Z Free-Variable Entity

Graph-like rule

Which book has two common 
readers with the book X while the 
two readers are friends?  

Z2

Tree-like rule

What is the address of the university 
that both the students X1 and X2 
study at?

X1

Z Y

X2

study at

study at

address of 
read

read

read(inv)

read(inv)

friend

Chain-like rule

Who is X’s friend’s supervisor?

Z YX
friend supervisor

sr: 0

sr: 2

sr: 1

sr: 3

sr: 2

sr: 4

sr: 2

Semantic 
Questions

Structural 
Logical Rules

Knowledge Graph 
and Scores

study at address of 
friend

supervisor

read
friend

read(inv)

Figure 1: Three examples of chain-like, tree-like, graph-like rules (three columns) and their corre-
sponding semantic questions, structural logical rules, KG and scores (three rows).

We propose a novel method that can explicitly learn the structural logical rules, including a logical
structure and the relations assigned on each edge, and we can use the inferred logical rules for
conducting inductive logical query with unseen entities and graphs. All the structural logical rules
construct a discrete search space to explore, and searching for that is an NP-hard problem. To
tackle with this problem, our method constructs a continuous space including both the structural
information and the relational information to learn, which allows us to train our model in an end-to-
end differentiable manner. Specifically, as shown in Figure 1, we take the frequency of a logical rule
in KG as its score to estimate how likely a logical rule stands. After optimizing w.r.t. the score, our
model yields interpretable logical rules of high quality, and support inductive logical query and link
prediction, which has been demonstrated by our extensive experiments on real-world datasets.

Our contributions can be summarized as following three aspects,

• We first propose the problem of learning graph-like rules and design an end-to-end differentiable
model that can learn graph-like logical rules instead of only chain-like or tree-like rules, modeling
both the logical structure describing how the logic connects and relations assigned on edges.

• We provide a uniform expression by Einsum to represent the score of all graph-like logical rules,
including the ones that cannot be represented by a combination of matrix/element-wise addi-
tion/product, which is elegant for expression and convenient for implementation.

• We conduct extensive experiments to demonstrate that our model has better expressive ability
for graph-like logical rules and show our model can mine high-quality logical rules with high
interpretability.

2 PROBLEM FORMULATION

Here, we formally introduce the definition of logical score, and based on that, we further introduce
our model’s main focus, relation inference (Yang et al., 2017; Sadeghian et al., 2019) and structural
rule learning, and our evaluation task, logical query (Hamilton et al., 2018; Ren et al., 2020).

Definition 1 (Logical Score) Logical rule is formulated by ^n
i=1Ri ! Rcpx : sr where sr is the

score for ^n
i=1Ri, and Ri is a relation Ri = Ri(Vi, V

0
i ), Vi, V

0
i 2 {{Xj}, Y, {Zk}} for i = 1, · · · , n

and Rcpx is a relation Rcpx({Xj}, Y ), {Xj} are input nodes, {Zk} are free-variable nodes, Y is
output node.

For strict logical query, for any Rcpx({Xj}, Y ), there exists (Z1, · · · , ZK) that make ^n
i=1Ri be

true, we can draw the conclusion ^n
i=1Ri ! Rcpx. However, because KG is usually noisy and

2



Other Rule Learning Approaches

• Neural logic machines (Dong et al. 2019)
• Neural theorem provers (Rocktäschel and Riedel, 2017)
• Relation-set following (Cohen et al, 2019)
• Path ranking (Lao and Cohen, 2010)
• DeepPath (Xiong et al. 2017)
• DIVA (Chen et al. 2018)
• Probabilistic personalized page rank (Wang et al. 2013)
• AMIE+ (Galárraga et al. 2015)



Conclusion

• Part I: Reasoning in Continuous Space
• TransE, TransR, RotatE

• Part II: Symbolic Logic Reasoning
• Logic programming
• Probabilistic logic programming (Markov Logic Networks)

• Part III: Neural-Symbolic Logic Reasoning
• pLogicNet, ExpressGNN

• Part IV: Logic Rule Induction/Learning
• Inductive logic programming
• Neural logic programming
• RNNLogic



Future Directions

• Few-shot Learning
• Can we reason with a few limited number of facts for each relation

• Integrate text + knowledge graph for reasoning
• Unstructured data are huge but noisy

• Combining System I and II reasoning
• Knowledge graph reasoning are mainly System II reasoning
• How to integrate with system I (perception)

• …



References
• Knowledge Graph Embedding

• Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information 
processing systems. 2013.

• Sun, Zhiqing, et al. "Rotate: Knowledge graph embedding by relational rotation in complex space." arXiv preprint 
arXiv:1902.10197 (2019).

• Wang, Zhen, et al. "Knowledge graph embedding by translating on hyperplanes." Aaai. Vol. 14. No. 2014. 2014.
• Nguyen, Dat Quoc, et al. "Stranse: a novel embedding model of entities and relationships in knowledge bases." arXiv

preprint arXiv:1606.08140 (2016).
• Yang, Bishan, et al. "Embedding entities and relations for learning and inference in knowledge bases." arXiv preprint 

arXiv:1412.6575 (2014).
• Trouillon, Théo, et al. "Complex embeddings for simple link prediction." International Conference on Machine 

Learning (ICML), 2016.
• Nickel, Maximilian, Lorenzo Rosasco, and Tomaso Poggio. "Holographic embeddings of knowledge graphs." arXiv

preprint arXiv:1510.04935 (2015).
• Dettmers, Tim, et al. "Convolutional 2d knowledge graph embeddings." arXiv preprint arXiv:1707.01476 (2017).
• Zhang, Shuai, et al. "Quaternion knowledge graph embeddings." Advances in Neural Information Processing Systems. 

2019.



References

• Symbolic Logic Reasoning
• Cussens, James. "Parameter estimation in stochastic logic programs." Machine Learning 44.3 (2001): 245-271.
• Kersting, Kristian, and Luc De Raedt. "Bayesian logic programs." arXiv preprint cs/0111058 (2001).
• Richardson, Matthew, and Pedro Domingos. "Markov logic networks." Machine learning 62.1-2 (2006): 107-136.
• Cohen, William W., Fan Yang, and Kathryn Rivard Mazaitis. "Tensorlog: Deep learning meets probabilistic 

dbs." arXiv preprint arXiv:1707.05390 (2017).
• Manhaeve, Robin, et al. "Deepproblog: Neural probabilistic logic programming." Advances in Neural Information 

Processing Systems. 2018.
• Skryagin, Arseny, et al. "Sum-Product Logic: Integrating Probabilistic Circuits into DeepProbLog."



References

• Neural & Symbolic Logic Reasoning
• Qu, Meng, and Jian Tang. "Probabilistic logic neural networks for reasoning." Advances in Neural Information 

Processing Systems. 2019.
• Zhang, Yuyu, et al. "Efficient probabilistic logic reasoning with graph neural networks." arXiv preprint 

arXiv:2001.11850 (2020).



References
• Logic rule induction/learning

• Qu, Meng*, Chen, Junkun*, Xhonneux Louis-Pascal, Bengio Yoshua, and Tang, Jian. "RNNLogic: Learning Logic Rules for 
Reasoning on Knowledge Graphs." arXiv preprint arXiv:2010.04029 (2020).

• Lao, Ni, Tom Mitchell, and William Cohen. "Random walk inference and learning in a large scale knowledge 
base." Proceedings of the 2011 conference on empirical methods in natural language processing. 2011.

• Wang, William Yang, Kathryn Mazaitis, and William W. Cohen. "Programming with personalized pagerank: a locally 
groundable first-order probabilistic logic." Proceedings of the 22nd ACM international conference on Information & 
Knowledge Management. 2013.

• Galárraga, Luis, et al. "Fast rule mining in ontological knowledge bases with AMIE $$$$." The VLDB Journal 24.6 
(2015): 707-730.

• Rocktäschel, Tim, and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information 
Processing Systems. 2017.

• Xiong, Wenhan, Thien Hoang, and William Yang Wang. "Deeppath: A reinforcement learning method for knowledge 
graph reasoning." arXiv preprint arXiv:1707.06690 (2017).

• Evans, Richard, and Edward Grefenstette. "Learning explanatory rules from noisy data." Journal of Artificial 
Intelligence Research 61 (2018): 1-64.

• Yang, Fan, Zhilin Yang, and William W. Cohen. "Differentiable learning of logical rules for knowledge base 
reasoning." Advances in Neural Information Processing Systems. 2017.

• Chen, Wenhu, et al. "Variational knowledge graph reasoning." arXiv preprint arXiv:1803.06581 (2018).



References

• Logic rule induction/learning
• Yang, Yuan, and Le Song. "Learn to Explain Efficiently via Neural Logic Inductive Learning." arXiv preprint 

arXiv:1910.02481 (2019).
• Dong, Honghua, et al. "Neural logic machines." arXiv preprint arXiv:1904.11694 (2019).
• Cohen, William W., et al. "Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base." arXiv

preprint arXiv:2002.06115 (2020).



Thanks!
Contact: jian.tang@hec.ca


