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Knowledge Graphs

* Knowledge graphs are heterogeneous graphs
* Multiple types of relations

* A set of facts represented as triplets
* (head entity, relation, tail entity) SN Y = =i
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Recommendation in E-commerce

* Suggest relevant items to users

include
W Adventur T
Cast Away starred N
genre ‘ s ty le
> H Tom Hanks star
Back -to starred collaborate '
the Future direct

directed

— Robert
The G Mil Steven
€ Lreen Vile Zemeckis spiclberg
Movies the user
have watched Knowledge Graph

~d
— direct

Interstellar

Forrest Gump

Raiders of
the Lost Ark

Movies the user
may also like

Figure from Wang et al. 2018



Question Answering

Question: “What are all the country capitals in Africa?”
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Drug Repurposing
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Information Retrieval

* Knowledge graphs are used to understand the meanings of query terms
and 1dentify documents that match the meanings
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Reasoning on Knowledge Graphs

* Knowledge graphs are usually incomplete. Many facts are missing

* A fundamental task: predicting missing links (or facts) by reasoning
on existing facts

* The Key Idea: leverage logic rules for reasoning on knowledge graphs
implicitly or explicitly

* Example:

Barack_Obama Bornln United_States
> Parents of Parents are Grandparents

Barack_Obama Nationality American



Reasoning in Continuous Space

* Knowledge graph embedding methods

* Map entities and relations into continuous space, and reasoning in the
continuous spaces

e TransE, TransH, TransR, ComplEx, RotatE, ....
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Reasoning in Symbolic Space

* Symbolic logical rule based methods
* Logic programming (€.g., Prolog)
* Markov Logic Network
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R2 1.5 VX.Y similar(X,Y)= (aboutSports(X) < aboutSports(Y
true. <«—answer from prolog interpreter ~ J§ 77 77 eeeencieececenes 200 (p() ----------- ports( ))

prolog query ¥ ST e et
piompt variables

?- friends(X, Y). links(a, b) links(a, b)

X = john,
Y = jane ; < type ; to get next solution
X = jane

Y = john.

Prolog Markov Logic Networks



Neural-Symbolic Reasoning

* Reasoning in both continuous and symbolic space
* pLogicNet (Qu and Tang, 2019)
* ExpressGNN (Zhang et al. 2019)
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Logical Rule Induction/Learning

* Logical rules are usually not available, how to infer logical rules from
knowledge graphs?

* Inductive logic programming
* Neural logic programming

Appears_in_TV_Show(X,Y) « Has Actor(X,Y)

Appears-in_TV_Show(X,Y) « Creator_-of(X,U) A Has_Producer(U, V) A Appears_in_TV_Show(V,Y)

ORG.-in_State(X,Y) + ORG._-in City(X,U) ACity-Locates_in_State(U,Y)

ORG._in_State(X,Y) + ORG._in City(X,U) A Address_of PERS.(U,V) ABorn_in(V,W) A Town_in_State(W,Y)

PersonNationality(X,Y) < Born_-in(X,U) APlace_in_Country(U,Y)

Person.Nationality(X,Y) + Student_of Educational_Institution(X,U) A ORG._Endowment_Currency(U, V)A
Currency Used-in Region(V,W) ARegion_in_Country(W,Y)




Roadmap

* Part I: Reasoning in Continuous Space
* Part II: Symbolic Logic Reasoning
* Part III: Neural-Symbolic Logic Reasoning

* Part I'V: Logic Rule Induction/Learning



Logical Rules

* Symmetric/Antisymmetric Rule
* Symmetric: e.g., Marriage
* Antisymmetric: e.g., Filiation

* Formally:

ris Symmetric: r 1(X)Y) « r(X,Y)VX,Y

Rule Head Rule Body
ris Antisymmetricc. -7 1(X,Y) « r(X,Y)ifVX,Y



Logical Rules

* Inverse Rule
* Hypernym and hyponym
* Husband and wife

* Formally:

ry isinverse to relation ,: 17 1(X,Y) «np(X,Y)ifVX,Y



Logical Rules

* Composition Rule
* My mother’s husband i1s my father

* Formally:

71 is a composition of relation 7, nX,2) < 1, (X, Y) A rs(Y,2)ifvVXY,Z

and relation r3:



TransE (Bordes et al. 2013)

* Each entity and relation 1s embedded as a low-dimensional vector

* Relation r defined as a translation from the head entity h to the tail
entity t.
|h+-r-t|

t=h+r =P e—>
h h-+r t

* Scoring function:

—||h + r — t||



Question

* What kinds of logical rules TransE can model and infer?



TransR (Lin et al. 2015)

e [imitations of TransE: entities and relations are assumed to be lie in
the same space, which might not be true

* Map entities to the semantic space of relations through a projection

h, = hM, t, = tM,

4 ' A
. : 27 My— & 5
* Scoring function: vl P
g | TN
AA‘ - / .‘
_”hr Fr tr” = sl c




RotatE (Sun et al. 2019)

. Rl?presenting head and tail entities in complex vector space, 1.¢., h,t €
C

* Define each relation r as an element-wise rotation from the head entity
h to the tail entity t, 1.¢.,

t=h°r, where|r;|=1

* ° 1s the element-wise product. More specifically, we have t; = h;r;,
and

I = ele"»i,

* where 0, ; 1s the phase angle of r 1n the 1-th dimension.



Geometric Interpretation

e Define the distance function of RotatE as

dyr(h,t) = ||h°r — t]|

|h+r-t|

h h+r {

(a) TransE models r as (h)_ RD_““E models r as ro-
trﬂng]ﬂtign in rea] Iine_ tation 1n C(}I“plﬂx plune.



Modeling the Relation Patterns with
RotatE

* Arelation r 1s symmetric 1f and only if r; = £1, 1.e.,

0ri=0o0rm

* An example on the space of C




Modeling the Relation Patterns with
Rotatk

* Arelation r 1s antisymmetric if and only if r°r # 1

* Two relations r; and 7, are inverse 1f and only 1if r, =179, 1.€.,
02 = —01

* Arelationrg = e'93 is a composition of two relations r; = ‘1 and
r, = e%2 ifonlyifry =ryory,ie,

03=91+02



Optimization (Sun et al. 2019)
* Negative sampling loss
k
1
L=—loga(y — d,(h,0)) = ) ~loga(d,(hi,t)) —7)

* y is a fixed margin, o is the sigmoid function, and (h;, r, t;) is the i-th
negative triplet.



Self-adversarial Negative Sampling (Sun et
al. 2019)

* Traditionally, the negative samples are drawn 1n an uniform way
* Inefficient as training goes on since many samples are obviously false
* Does not provide useful information

* A self-adversarial negative sampling
* Sample negative triplets according to the current embedding model
* Starts from easier samples to more and more difficult samples
* Curriculum Learning

. , exp afr(h t/

p(hy, 65 {(hi, 7, t3) 1) = - by, %)

2_; exp afr(hy, t)

* a is the temperature of sampling. f,.(h/, t{) measures the salience of
the triplet




The Final Objective

* Instead of sampling, treating the sampling probabilities as weights.

L =—logo(y—d.(h,t)) Zp (hy,r t;)logo(d,-(h, t;) —~)



Other Approaches

* TransH (Wang et al. 2014)

* STransE (Nguyen et al. 2016)

* DisMult (Yang et al. 2014)

* ComplEx (Trouillon et al. 2016)
* HolE (Nickel et al. 2016)

* ConvE (Dettmers et al. 2017)

* QuaE (Zhang et al. 2019)



Analysis on Inferring Different Types of
Logical Rules

Model Score Function Symmetry | Antisymmetry | Inversion | Composition
SE — ||Wr,1h— Wr,2t|| X X X X
TransE —||h+r —t] X v v v
TransX | — [[gr1(h) + 1 — g, 2(t)]| v v X X
DistMult (h,r,t) v X X X
ComplEx Re((h,r,t)) v v v X
RotatE —||hor — t| v v v v




Benchmark Data Sets

* FB15K: a subset of Freebase. The main relation types are
symmetry/antisymmetry and inversion patterns.

* WNI18: a subset of WordNet. The main relation types are
symmetry/antisymmetry and inversion patterns.

« FB15K-237: a subset of FB15K, where inversion relations are deleted. The main
relation types are symmetry/antisymmetry and composition patterns.

« WNI18RR: a subset of WN18, where inversion relations are deleted. The main
relation types are symmetry/antisymmetry and composition patterns.

Dataset #entity | #relation | #training | #validation | #test
FB 15k 14,951 1,345 483,142 50,000 59,071
WNIS 40,943 |8 141,442 5.000 5.000

FB15k-237 | 14,541 237 272,115 17,535 20.466
WNI8RR 40,943 |1 86,835 3.034 3.134




Results on FB15k and WN18

* RotatE performs the best

pRotatE performs similarly to RotatE

FB15k WNI18

MR MRR H@] H@3 H@l]0 | MR MRR H@l H@3 H@IO
TransE [¥] - 463 297 578 749 - 495 113 .888 943
DistMult [¢] | 42 198 - - 893 655 797 - - 946
HolE - 524 402 613 139 - 938 930 945 949
ComplEx - .692 599 159 .840 - 941 936 945 947
ConvE 51 657 558 123 831 374 943 935 946 956
pRotatE 43 799 750 .829 .884 254 947 942 950 957
RotatE 40 197 746 .830 .884 309 .949 944 952 959




Results on FB15k-237 and WN18RR

* RotatE performs the best

* RotatE performs significantly better than pRotatE
* A lot of composition patterns on the two data sets
* Modulus information are important for modeling the composition patterns

FB15k-237 WNI18RR
MR MRR H@l H@3 HE@lI0 | MR MRR H@]l H@3 H@IO
TransE [¥] | 357 .294 - - 465 3384 226 - - 501
DistMult 254 241 155 263 419 5110 43 .39 44 49

ComplEx | 339 247 A58 275 428 5261 44 41 46 Sl
ConvE 244 325 237 356 S01 4187 43 40 44 52

pRotatE 178 328 230 365 524 2923 462 A17 479 552
RotatE 177 338 241  .375 S33 3340 476 428 492 S71




Results on Countries (Bouchard et al.
2015)

* A carefully designed dataset to explicitly test the capabilities for
modeling the composition patterns

e Three subtasks S1, S2, S3
* From easy to difficult

Countries (AUC-PR)
DistMult ComplEx ConvE RotatE
S1 | 1.00+0.00 | 0.97£0.02 | 1.00+0.00 | 1.00 £0.00
S2 | 0.72+£0.12 | 0.57+0.10 | 0.9940.01 | 1.00+0.00
S3 | 0.524+0.07 | 0.43£0.07 | 0.86x0.05 | 0.95+0.00




WikidataSM: a Large-scale Knowledge
Graph (Wang et al. 2019)

* Contains 5 million entities and also the the descriptions of entities

* Pretrained knowledge graph embeddings with WikidataSM:
https:// graphwte 10/pretra1ned models
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https://graphvite.io/pretrained_models

Open Source Package

* OpenKE by Prof. Zhiyuan Liu’s group:
https://github.com/thunlp/OpenKE

* KnowldgeGraphEmbedding by Prof. Jian Tang’s group:
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

* GraphVite by Prof. Jian Tang’s group: https://graphvite.i0/
* DGL-KGE by Amazon: https://github.com/awslabs/dgl-ke



https://github.com/thunlp/OpenKE
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://graphvite.io/
https://github.com/awslabs/dgl-ke

Roadmap

* Part I: Reasoning in Continuous Space
* Part II: Symbolic Logic Reasoning
* Part III: Neural-Symbolic Logic Reasoning

* Part I'V: Logic Rule Induction/Learning



Logic Programming

* Logic programs consist of clauses

* Each clause can be viewed as a first-order logic rule

* Example:
* VX,Y,Z Grandfather(X,Y) « Father(X,Z) A Father(Z,Y)

Rule Head Rule Body

* Apply logic rules to existing facts to infer new facts



Inference Algorithms

* Two fundamental algorithms:

* Forward chaining algorithm:

* Repeatly apply given logic rules to the current set of facts, until the fact
set converges.

 Strength: able to find a large number of facts every time
* Weakness: inefficient and high memory cost
* Backward chaining algorithm:

* For each query, use the given logic rules and depth-first search to
construct a search tree to infer the answer.

 Strength: efficient
* Weakness: focus on each individual query



Inference Algorithms

* Examples:
* Given facts: Father(a, b) Father(b,c) Father(c,d)
» Given logic rule: VX,Y,Z Grandfather(X,Y) « Father(X,Z) A Father(Z,Y)

Forward Chaining Backward Chaining

Iteration O: Father(a, b) Father(b,c) Father(c,d) Query: Grandfather(?, c¢)
l Apply the given rule

Father(?,Z) A Father(Z, ¢)
l Replace Z with b
Father(?,b)

i Replace ? with a

Iteration 1: Father(a, b) Father(b,c) Father(c,d)
Grandfather(a,c) Grandfather(b, d)

Iteration 2: Father(a, b) Father(b,c) Father(c,d)
Grandfather(a, c) Grandfather(b,d)

Convergence 2=a



Logic Programming in Probabilistic Ways

* Combine first-order logic with probabilistic models
* Model logic rules 1n a probabilistic way, yielding soft rules.
* Handle the uncertainty of logic rules

* Representative methods:
* Markov logic programming (Richardson and Domingos, 2006):
* Markov Logic Networks (Richardson and Domingos, 2006)
* Stochastic logic programming (Cussens, 2001) :
* TensorLog (Cohen et al. 2017)



Markov Logic Programming
(Richardson and Domingos, 2006)

* Associate a scalar weight to each logic rule

* Apply the given logic rules to the given facts, and use the forward
chaining algorithm to find a collection of relevant facts.

* Build a Markov network and perform inference to predict the value
of each fact (true/false)



Markov Logic Programming
(Richardson and Domingos, 2006)

* Example:

e Rules:
* R1:VX,Y Nationality(X,Y) « Loveln(X,Y)

« R2: VX, Y Nationality(X,Y) « PoliticianOf(X,Y)

weight 0.2
weight 2.6

* R3:VX,Y Nationality(X, Z) « BornIn(X,Y) A CityOf(Y,Z) weight 1.5

* All obtained facts and the graph structure:

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)

Born in N\ City of = Nationality 1.5 ?

° /Vati0” .
alipy « Poliy cia
\/ (Alan Turing, Nationality, UK) "of2¢6 X

(London, City of, UK) (Alan Turing, Politician of, UK)

1
p(Vo,Vy) = 7 exp (Z wn (vo, VH)>

leL

Vy: Observed facts

vy : Hidden facts inferred by forward chaining
w;: Weight of rule [

n;: Number of times [ is satisfied



Stochastic Logic Programming
(Cussens, 2001)

* Associate a scalar weight to each logic rule

* For each query, use the given logic rules and backward chaining
algoritm to build a search tree.

* Infer the answer according to rule weights and tree structure



Stochastic Logic Programming
(Cussens, 2001)

* Example:

e Rules:

* R1:VX,Y Nationality(X,Y) « Bornln(X,Y) weight 3.0

« R2:VX,Y BornIn(X,Y) « Liveln(X,Y) weight 0.8

 R3:VX,Y BornIn(X,Y) « GrewUpIn(X,Y) weight 1.2
Multiplying the weights of rules Normalizing entity scores to get
in a reasoning path as score a distribution for the answer

APPVRZ Liveln(Bob,?) — » Canada P =0.33
Query: Apply R1 Score = R1.wtxR2. wt = 2.4

ApPly R )
Nationality(Bob, ?) BornIn(Bob,?)

ApplyR3 "+ GrewUpIn(Bob,?) — > USA
Score = R1. wtxR3.wt = 3.6 P =0.67



Other Formalizations

* Bayesian logic programming (Kersting and De Raedt et al. 2001):

* Methods:
* DeepProbLog (Manhaeve et al. 2018)
* SPLog (Skryagin et al. 2020)



Roadmap

* Part I: Reasoning in Continuous Space
* Part II: Symbolic Logic Reasoning
* Part II1: Neural-Symbolic Logic Reasoning

* Part I'V: Logic Rule Induction/Learning



Markov Logic Networks
(Richardson and Domingos, 2006)

* Combines first-order logic and probabilistic graphical models

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)

0.2 Live(X, Y) => Nationality (X, Y) iV e in02 v
\ W

2.6 Politician_of(X, Y) => Nationality (X, Y) Sorn in \ City o = Nationality 1.5

atlolla[,{y i
1.5 Born(X,Y)ACity_of (Y,Z) => Nationality(X, 2) v w NaM X

(London, City of, UK) (Alan Turing, Politician of, UK)

1
p(vo,vyg) = = eXp Twl Y 1{gistrue} | = ~ ©Xp ( wml(VO,VH)>
leL

leL gelG;

V,: observed facts w;: weight of logic rule [
Vy;: unobserved/hidden facts n;(Vo, Vy): number of true grounds of the logic rule !

45



Pros and Cons of Markov Logic Networks

* Pros

 Effectively leverage domain knowledge with logic rules
* Handle the uncertainty

* Limitation
* Inference 1s difficult due to complicated graph structures
* Recall 1s low since many facts are not covered by any logic rules

46



Knowledge Graph Embeddings

* Learning the entity and relation embeddings for predicting the missing
facts (e.g., TransE, ComplEx, DisMult, RotatE)

* Defining the joint distribution of all the facts
p(vOa VH) — H Ber(v(h,’r,t) ‘f(th Xry Xt))7
(h,r,t)eEOUH

An example:

Bef(V(h,r,t) ‘f(Xh, X, Xt)) =o(y — ||Xh + X, — X¢]| |) o is the sigmoid function, y is a fixed margin

* Trained by treating V,, as positive facts and V as negative facts

47



Pros and Cons

* Pros

* Can be effectively and efficiently trained by SGD
* High recall of missing link prediction with entity and relation embeddings

* Cons
* Hard to leverage domain knowledge (logic rules)

48



Probabilistic Logic Neural Networks for
Reasoning (Qu and Tang, NeurIPS’19. )

* Towards combining Markov Logic Networks and knowledge graph
embedding

* Leverage logic rules and handling their uncertainty
 Effective and efficient inference

* Define the joint distribution of facts with Markov Logic Network

* Optimization with variational EM

* Parametrize the variational distribution with knowledge graph embedding
methods

Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning.” In NeurlPS’2019.

49



pLogicNet

* Define the joint distribution of facts with an MLN

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)

Born in N\ City of = Nationality 1.5

v

(London, City of, UK) (Alan Turing, Politician of, UK)

* Learning by maximizing the variational lower-bound of the log-
likelihood of observed facts

log pw(vo) = L(q9, Pw) = Eqy(vi)10gPw(Vo, V) —log qo(ve)]

50



Inference

 Amortized mean-field variational inference

* Use knowledge graph embedding model to parameterize the variational
distribution

wive)= ] @&ury) = 11 Ber(Vneplf(xn % x)),

(h,r,t)eEH (h,rt)eEH

51



Learning

* Optimize pseudo-likelihood function
* Update the weights of logic rules

€PL(w) = ]qu(vH)[Z logpw(v(h,r,t)\VOUH\(h,r,t))] = qu (vH)[Z logpw(V(h,r,t)\VMB(h,r,t))]:

h,’l“,t h7T7t

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)

\/ \ N sionality < Live in 0.2 \/
a

Born in N\ City of = Nationality 1.5 ? N,

QII.O” .
aliyy « PoliiiC'ia
\/ (Alan Turing, Nationality, UK) "of2.¢6 X

(London, City of, UK) (Alan Turing, Politician of, UK)

52



Performance of Link Prediction

Datasets: benchmark knowledge graphs
* FB15K, WN18, FB15K-237, WN18-RR
Logic rules:
* Composition rules (e.g., Father of Father is GrandFather)
* Inverse rules (e.g., Husband and Wife)
* Symmetric rules (e.g., Similar)

e Subrelation rules (e.g., Man => Person)

Category Algorithm FB15k WNIS
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TransE [3] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [17] 42 0.798 - - 89.3 655 0.797 - - 94.6
KGE HolE [26] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [41] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7
ConvE [8] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6
Rule-based BLP [7] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0
MLN [32] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9
Hybrid RUGE [15] - 0.768 70.3 81.5 86.5 - - - - -
NNE-AER [9] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8
Ours pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94 .4 95.7
pLogicNet* 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8

53



ExpressGNN (Zhang et al. 2019)

* Inference with graph neural networks
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Source Codes

* pLogicNet: https://github.com/DeepGraphLearning/pLogicNet
* ExpressGNN: https://github.com/expressGNN/ExpressGNN



https://github.com/DeepGraphLearning/pLogicNet
https://github.com/expressGNN/ExpressGNN

Roadmap

* Part I: Reasoning in Continuous Space
* Part II: Symbolic Logic Reasoning
* Part III: Neural-Symbolic Logic Reasoning

* Part IV: Logic Rule Induction/Learning



Learning Logic Rules

* Methods introduced so far:
* Require given logic rules as input
* Unable to discover logic rules automatically

* Learning logic rules:
* Learn useful logic rules from existing knowledge graphs

* Foundation:
* Inductive logic programming



Inductive Logic Programming

* Problem description:
* Given: background facts B, positive examples P, negative examples N
* Qutput: first-order logic rules H suchthat BAH P BAHE¥EN
* Applying H to B yields all positive examples in P
* Applying H to B yields none of negative examples in N
* Key 1dea: generate-and-test

* Generate a set of candidate logic rules for reasoning
* Choose the most useful logic rules from all candidates



Inductive Logic Programming

* Example:
* Background facts: Father(a, b) Father(b,c) Father(c,d)
* Positive facts: GrandFather(a, c¢)
* Negative facts: GrandFather(a, d)

Consistent with

VX,Y,Z Grandfather(X,Y) « pos/neg facts
Father(X, Z) A Father(Z,Y)

v

Useful Rule

Rule Template - Conflict with

VX,Y,Z Grandfather(X,Y) « pos/neg facts
Father(X, U) A Father(U, V) A Father(V,Y)

v

Unuseful Rule




Limitations of Traditional ILP

* Inability to handle noisy, erroneous or ambiguous data
* E.g., mislabeled data in the positive or negative examples

* Neural ILP: combines the advantages of ILP and neural network-based
systems:
* data efficient
* able to learn explicit human-readable symbolic rules
* Robust to noisy and ambiguous data



Differentiable ILP (Evans et al. 2017)

* Key 1deas:
* Generate candidate logic rules according to pre-defined templates
* Assign a scalar weight to each candidate rule
* Perform differentiable forward chaining for reasoning

* Choose rules with large weights as useful ones



Differentiable ILP (Evans et al. 2017)

A differentiable extension of inductive logic programming:
* Inductive logic programming;:
* The value of each ground atom 1s discrete (true/false)
* The logic operators are discrete (— A V)

 Differentiable ILP:
 Approximate the value of ground atoms with a continuous value in [0,1]
* Approximate logic operators with differentiable operators
e xVy=max{x,y} or xVy=x+y—x-y withx,y € [0,1]
*XAYy=X-Yy
e ax=1—x



Differentiable ILP (Evans et al. 2017)

* Apply forward chaining and all the candidate logic rules to the given
facts, yielding a collection of new facts and predicted values.
* Example:

e Rules:

« R1: Nationality(X,Y) < BornIn(X,Y) R2: Nationality(X,Y) « Liveln(X,Y)
e (Given facts: Bornln(Bob, Canada) Liveln(Bob, USA)
* New facts: Nationality(Bob, Canada) Nationality(Bob, USA)

* The value of each new fact is a function of rule weights
- value(Nationality(Bob, Canada)) =
- value(Nationality(Bob, USA)) =



Differentiable ILP (Evans et al. 2017)

* Adjust rule weights to minimize the difference between the ground-
truth atom value and predicted atom value
* Example:
* Positive example (the value is 1): Nationality(Bob, Canada)
* Negative example (the value is 0): Nationality(Bob, USA)

e Predicted values:
. value(Nationality(Bob, Canada)) = f1(w)

. value(Nationality(Bob, USA)) = fo(w)
* Cross-entropy loss:

* £(w) = —{log(fi(w)) +log(1 — fo(w))}



Neural LP (Yang et al. 2017)

* Key 1deas:
* Generate chain-like logic rules up to a certain length as candidates
* Assign a weight to each candidate with an attention mechanism
* Integrate all the candidate logic rules for reasoning

* Choose rules with large weights as useful ones



Neural LP (Yang et al. 2017)

* Chain-like logic rules:
a query(Y,X) « R{(Y,Z{) A AR (Zy, X)

e o € |0,1]: the confidence associated with this rule
* n: the length of this rule

* Example:
 Nationality(X,Y) « Liveln(X,Z) A CityOf(Z,Y)
* GrandFather(X,Y) « Father(X,Z) A Father(Z,Y)



Neural LP (Yang et al. 2017)

* Reasoning by matrix multiplication:
* Assign an interger index to each entity
* Let v; be a one-hot vector with the entry of entity 1 being 1

e Let Mg be a matrix in {0,1}EXIEl such that the (i, j)-entry is 1 if and only
if R(i,j) is a given fact

 During reasoning, for a rule R(Y,X) « P(Y,Z) A Q(Z,X) and query R(?,X),
the answer can be obtained by:

* Computing s = Mp - Mq - vy
* Retrieving entities whose entries are nonzeros as answers



Neural LP (Yang et al. 2017)

* Integrating multiple rules for reasoning;:

* Consider:
* A query R(7,X)
« A set of logic rules {(a;, ; = R(Y,X) « R1(Y,Z1) A+ AR, (Zy, Y))}l

* Apply backward chaining for reasoning:
* Each rule [ gives a score over all entities 5; = al(HRkEBody(,Bl) MRk)VX

* Combing all rules yields s = };;s; = Zl(al(HRkeBody(,Bl) MRk)VX)
* The value of the i-entry in s 1s the score received by entity i



Neural LP (Yang et al. 2017)

* Maintain a set of auxiliary memory vectors u;
* Memory attention vector b,
* Operator attention vector a;

query ——s| Controller j Operators

t—1
u, = ) afMy, (Z quT> forl <t<T a; = softmax (Why + b)
k =0

4 ' Ug = Vi .
A -0l My _
vemory /\ - 7 hy = update (hy_1, input)

T by = softmax ([ho, . ,ht_l]Tht)

w1 M T
Ixl ur41 = E br ur
0 - 7=0




Neural LP (Yang et al. 2017)

e Main results:

* Neural LP outperforms many knowledge graph embedding methods

WN18 FB15K FB15KSelected
MRR Hits@10 MRR Hits@10 MRR Hits@10
Neural Tensor Network  0.53 66.1 025 414 - -
TransE 0.38 90.9 0.32 539 - -
DISTMULT [29] 0.83 94.2 U35 o7 0.25 40.8
Node+LinkFeat [25] 094 943 082 87.0 0.23 34.7
Implicit ReasoNets [23] - 95.3 - 92.7 - -
Neural LP 094 945 0.76  83.7 024  36.2




Neural LP (Yang et al. 2017)

* Case study:
* The learned logic rules are quite intuitive

1.00 partially_contains (C, A) <—contains (B, A) A contains (B, C)
0.45 partially_contains (C, A) <—contains (A,B) A contains (B, C)
0.35 partially_contains (C,A) <—contains (C,B) A contains (B, A)

1.00 marriage_location (C, A) <—nationality (C,B) A contains (B, A)
0.35 marriage_location (B, A) <—nationality (B, A)
0.24 marriage_location (C,A) <—place_lived (C,B) A contains (B, A)

1.00 film_edited_by (B, A) <—nominated_for (A, B)
0.20 film_edited_by (C, A) <—award_nominee (B, A) A nominated_for (B, C)




Neural LP (Yang et al. 2017)

* Inductive knowledge graph reasoning (Hit@10):

* The learned rules can be used 1n other knowledge graphs for reasoning

WNI18 FB15K FB15KSelected

TransE 0.01 0.48 0.53
Neural LP 94.49 73.28 27.97




Limitation

e Idea:

* Consider a large number of candidate logic rules
* Learn the weights of these rules jointly

* Limitation:
* High dimensionality
* The weights may not reflect the important of rules precisely



RNNLogic (Qu and Chen et al. 2020)

* A new rule learning approach RNNLogic:
* Treating a set of logic rules as a latent variable
* A rule generator for generating candidate logic rules (prior)
* A reasoning predictor with logic rules (likelihood)

* RNNLogic 1s able to effectively perform search in the search space
* An effective EM algorithm for optimizing RNNLogic

* Outperforms many competitive rule learning methods and knowledge
graph embedding methods on several benckmark datasets

Qu, Meng*, Chen, Junkun*, Xhonneux Louis-Pascal, Bengio Yoshua, and Tang, Jian. "RNNLogic: Learning Logic
Rules for Reasoning on Knowledge Graphs." arXiv preprint arXiv:2010.04029 (2020).



Chain-like Rules

e Rules with a chain structure:
* 1(Xo, X1) « r1(Xo, X1) Ara(X1, X2) Ao Ari(Xp—q, X)

* Example:
 Nationality(X,Y) « Liveln(X,Z) A CityOf(Z,Y)
* GrandFather(X,Y) « Father(X,Z) A Father(Z,Y)
* Chain-like rules capture:
* Composition
 Symmetric relations r(X,Y) « r~1(X,Y) withr~?! the inverse relation of r
e Inverse relations r(X,Y) « r;1(X,Y) withr;?! the inverse relation of r;



Probabilistic Formalization

* Problem:
e Input: a query q = (h,r,?), a background knowledge graph G
* Output: the answera =t
* The goal is to model p(alg, q)

* Probabilistic formalization:
* Treat a set of chain-like logic rules as a latent variable z

Pwe(alg, q) = z pw(alG, q,2)pe(z|q) = E,,(z/q)[Pw(alg, q,2)]
z / \

Likelihood from a Reasoning Predictor p,, Prior from a Rule Generator pg

* Objective function: max OW, 0) = EG ga)~py... | 108 Pwe(alG, )]



Rule Generator py(z|q)

* Each chain-like rule can be represented as a sequence of relations:
* 1(Xo, X1) « r1(Xo, X1) Ara(X1, X2) Ao Ari(Xp—q, X)
 [r,r{,19,...,1;, TEnp] Where rgyp 1S a special ending relation

* Such sequences can be effectively generated by an RNN

* The probability of each rule can be simultaneously computed
* p(rule) = RNNg(rule|r)

* For a query q = (h,1,?), define the prior over a set of rules z as:
* pg(z|q) = Mu(z|N,RNNg(- [r)) where Mu is multinomial distribution
 Generative process of Z ~ pg(z|q):

e Generate N chain-like rules with RNNg, form Z with these rules.



Reasoning Predictor p,, (alG, q, z)

* For each query q = (h,1,?), we can use rules in z to get a search tree:
* Query: g = (Bob, Nationality, ? )
* Logic rules in z:
* Ry:Nationality « Bornln A CapitalOf  R,: Nationality « Visited A CityOf

CapitalOf

Bornln Paris / France Each logic rule finds some candidate answers
o CityOf
Bob Visited » Lyon France
o R1 T
Visited
CityOf Canad
Montrea] ==——» (Canada anada
R,
. CityOf
Visited ™ NYC S USA USA



Reasoning Predictor p,, (alG, q, z)

* Assign a score to each candidate answer according to the
corresponding logic rules:

* Bob —» Ry: Bornln A CapitalOf — France
* Bob = R,: Visited A CityOf — France

Score(France) = y,, (R;)¢,, (Bob, Bornln, CapitalOf, France) + ¢, (R,)¢,, (Bob, Visited, CityOf, France)

Scalar weight of each rule Score of each relational path, either a constant or computed with embeddings
( . G Ry R)) exp(Score(France))
a = France|G, q,z = , =
Pw 1 v exp(Score(France)) + exp(Score(Canada)) + exp(Score(USA))

Softmax over all candidate answers



Optimization

* An EM algorithm:

Knowledge Graph

g \

Query Rule Generator LogicARules Reasoning Predictor Answer
q=(hr7?) Po (219) | z . pw(algq2) a=t
Prio/:\‘“\\ l ,,/"/[;[kelihood
\A Aa

Important Logic Rules
21 ~ pB,W(zllgr q, a)

* In each 1teration:
* Explore a set of logic rules Z from the rule generator pg
* E-step: Identify a subset of important rules based on posterior pg ,,(2;|G, q, a)
* M-step: Update pg and p,, according to the selected important rules



Optimization E-step

* Goal of E-step:

* Identify a set of most important rules

* Posterior inference:
» Compute the posterior distribution (z; C Z is a subset of all the generated rules):

Pow(Z11G,q,a) x py(alg,q,z,)pe(z;|q)
— — S

Posterior Likelihood from p,, Prior from pg

* Infer Z; = arg max pg ,,(2,|G, q, @) as the most important rules
Z]

* A set of logic rules with the maximum posterior probability



Optimization E-step

* Approximation:
* Fora query q = (h,1,?) and answer a = t, compute H(rule) for each rule € Z:

1
H(rule) = {score(tlrule — m Z score(elrule)} + log RNNg (rule|r)

/ - \. \

The score that rule assigns to the correct The mean score that rule assigns to all Prior probability of rule
answer in the reasoning predictor candidate answers in the reasoning predictor from the rule generator

* H(rule) reflects how important each rule is for a pair of (g, a)
 Z; can be formed by K rules with the maximum H (rule)



Optimization M-step

* Goal of M-step:
 Use the identified important rules Z; to update the reasoning predictor p,, and
rule generator pg
 For each query g = (h,1,?) and answer a = t:
* Reasoning predictor:
« Maximize log p,,(a = t|G, q, Z;)
* Rule generator:
* Maximize log pg(Z;|q) = Xryieez, 108 RNNg (rule|r)

\

Increase the probability of each identified important logic rule



Experimental Setup

* Data:
* Asetof (h,r,t)-triplets T
* Training:
« Randomly sample a (h,r,t) €T
* Form the question and answeras ¢ = (h,r,?)anda =t

* Form the background knowledge graphas G = 7 \ (h,1,t)
 Treat (G, q, a) as each training instance

* Testing:
* Form the background knowledge graphas G = T



Main Results on FB15k-237 and WNI18RR

* RNNLogic outperforms all rule learning methods

* RNNLogic achieves comparable results to state-of-the-art knowledge

graph embedding methods

Category Algorithm FB15k-237 WNISRR
MR MRR H@l H@3 H@10 | MR MRR H@l H@3 He10

TransE* 357  0.294 - - 465 | 3384  0.226 - - 50.1

DistMult* 254 0241 155 263 419 | 5110 043 39 44 49

No Rule ComplEx* 339 0247 158 275 428 | 5261 044 41 46 51
Learning COmpIEXx-N3* - 0.37 - - 56 - 0.48 - - 57
ConvE* 244 0325 237 356 501 | 4187 043 40 44 52
TuckER* - 0358 266 394 544 - 0470 443 482 526
RotatE* 177 0338 241 375 533 | 3340 0476 428 492 571
PathRank - 0.087 74 9.2 112 - 0189 171 200 225
NeuralLPf - 0237 173 259  36.1 - 0381 368 386  40.8
Rule DRUM! - 0.238 174 261 364 - 0382 369 388 410

Learning NLIL* - 0.25 - - 32.4 - - - - -
MINERVA* - 0293 217 329 456 - 0415 382 433 480

M-Walk* - 0232 165 243 - - 0437 414 445 -
RNNLogic  "/0emb. 538 0288 208 315 445 | 7527 0455 414 475 531
& with emb. 232 0344 252 380 530 | 4615 0483 446 497 558




Main Results on Kinship and UMLS

* RNNLogic outperforms all the methods

* RNNLogic achieves comparable results to state-of-the-art knowledge
graph embedding methods even without using embedding in predictors

Category Algorithm Kinship UMLS
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

DistMult 8.5 0.354 18.9 40.0 195 14.6 0.391 25.6 44.5 66.9
No Rule ComplEx 7.8 0.418 24.2 499 81.2 13.6 0411 273 46.8 70.0
Learning ComplEx-N3 - 0.605 43.7 710 92.1 - 0.791 68.9 87.3 95.7
TuckER 6.2 0.603 46.2 69.8 86.3 5.7 0.732 62.5 81.2 90.9
RotatE 3.7 0.651 50.4 o] 93.2 4.0 0.744 63.6 82.2 93.9
MLN 10.0 0.351 18.9 40.8 70.7 7.6 0.688 58.7 795 86.9
Boosted RDN 25.2 0.469 39.5 52.0 56.7 54.8 0227 14.7 25.6 37.6
Rule PathRank - 0.369 272 41.6 67.3 - 0.197 14.8 214 252
Learning NeuralLP 16.9 0.302 16.7 33.9 59.6 10.3 0.483 33.2 56.3 775
DRUM 11.6 0.334 18.3 37.8 67.5 8.4 0.548 35.8 69.9 85.4
MINERVA - 0.401 235 46.7 76.6 - 0.564 42.6 65.8 814
CTP - 0.335 17:7 37.6 70.3 - 0.404 28.8 43.0 67.4
RNNLogic w/o emb. 3.9 0.639 49.5 131 92.4 5.3 0.745 63.0 83.3 924
with emb. 31 0.722 59.8 814 94.9 3.1 0.842 77.2 89.1 96.5




Performace w.r.t. the Number of Rules

* Generate different numbers of logic rules with different methods
* Train reasoning predictors with these rules to evaluate the results
* RNNLogic achieves competitive results even with 10 rules per relation

Kinship WN18RR
-’/'/""4+ + +
0.6 i e
Zah 0.4
B
0.5
0.3
0.4
o 14
o o
=03 =02
Algorithm Algorithm
0.2 —e«— Empirical Precision —e— Empirical Precision
NeuralLP Gt NeuralLP
0.1 P Path Ranking Path Ranking
0o Wt —+- RNNLogic 0.0 «— —+= RNNLogic
' 20 40 60 80 100 20 40 60 80 100

# Logic Rules # Logic Rules



Case Study

* The logic rules generated by RNNLogic are meaningful and diverse
* Rule 1 1s a subrelation rule
* Rule 3&4 are two-hop compositional rules
* Others have more complicated forms

Appears_in_TV_Show(X,Y) «+ Has Actor(X,Y)
Appears-in_TV_Show(X,Y) « Creator_of(X,U) A Has_Producer(U,V) A Appears_-in_TV_Show(V,Y)

ORG.._in_State(X,Y) < ORG._in City(X,U) ACity_Locates_in_State(U,Y)
ORG._in_State(X,Y) « ORG._in City(X,U) A Address_of PERS.(U,V) ABorn_in(V,W) A Town_in_State(W,Y)

Person_Nationality(X,Y) < Born_in(X,U) APlace_in_Country(U,Y)
Person Nationality(X,Y) < Student_of Educational_Institution(X,U) A ORG._Endowment_Currency(U,V)A
Currency.-Used.in Region(V,W) ARegion_in_Country(W,Y)




More Examples of Learned Rules

X Person_Nat J.onallty\

7 & Y

Born-in Place.in Country
X >y U > Y

7 7
(Definition.)
Spouse PersonNationality
X y U » Y

(By a fact that people are likely to marry a person of same nationality.)
ORG. _Endowment_Currency\

X > U > V <

Region-in.-Country
w »Y

Student_of Region_Currency

(Use the currency to induct the nationality.)

Born.in Born.in Person-Nationality
X > U < |4 >

7

Politician-of Politician-of Person.Nationality
X > U < \%4 > Y

Relation < Rule (Explanation)
X Appears_in_TV_Show) Y e X Actor.of Y

(Definition. An actor of a show appears in the show, obviously.)

7= X Creator.of) U <Producer.of V Appears_J‘_n_TV_Show> Y
(The creator X and the producer V' of another show U are likely to
appear in the same show Y.)

. X <Ac:t:or_of U <Award_Nominated V (Winner_of Y

“ X Writer_of) U <Creat:ex:_of V Actor.of} Y

« X Student_of) U <Student_of 74 Appears__"Ln_TV_Show> Yy
(Two students X and V' in the same school U are likely to appear in the
same show Y.)

ORG.-in_Stat ORG..in.Cit City-in_State
X——3Y « X LU — »Y

(Use the city to indicate the state directly.)

= X ORG._in_City) U (Lives_in 174 Born_in) W 'I‘own_in_St:at:e> Y
(Use the person living in the city to induct the state.)

. <Sub—ORG._of U ORG..in.State> Y

il X Sub—ORG.-of) <Sub—ORG..of V ORG..in.State) Y

ORG.-in.Cit ORG.-in.Cit ORG._in_State
« X LU « 'y »Y

(Two organizations in the same city are in the same state.)

X

Manifestation-of Yy

7

Treats Prevents Precedes
X < U >V < Y

Complicates Precedes
X < U < Y

Location.of Is.a Precedes
>y U >V < Y

b

Complicates Precedes Occurs-in
X < U A Y

Location.of Occurs-in Occurs-in
> U < V < Y

b

Precedes Occurs-in Degree_of
> U < V< Y

X Affects Y

e e Ot e O Y Y N Y I A

Result.of Occurs-in Precedes
> U » V » Y

b

Precedes Produces Occurs-in
X < U >V < Y

Prevents Disrupts Co-occurs-with
X < U » V » Y

Result.of Complicates Precedes
X < U—= sV »Y

Assesses_Effect.of Method-of Complicates
X ¢ U >V > Y

4

Process.of Interactswith Causes
> U %4 » Y

>

Assesses_Effect_of Result_of Precedes
X < U « \% > Y

7




Beyond Chain-like Rules

e Tree-like rules:

 Learn to Explain Efficiently via Neural Logic

Inductive Learning

* (Yang and Song, 2020)

* Graph-lile rules:

Knowledge Graph

* Differentiable Learning of Graph-like Logical ==
Rules from Knowledge Graphs

* (ICLR 2021 anomalous submission)

Chain-like rule Tree-like rule Graph-like rule
emantic ; Verci i
K Who is X’s friend’s supervisor? What is the address of the university ~ Which book has two common
Questions that both the students X, and X, readers with the book X while the
study at? two readers are friends?
° Input Entity @ Target Entity a Free-Variable Entity
Strlf tural tudy at re%e read(inv)
Logical Rule friend . supervisor address of \
°:(°:>® :3@ fr
tudy at read /

. @
upervisor studyat address

of
L]

read(inv)

@ sr:0 PY
sr:3 o w 4
sri2 rea‘ — ® st
sr:2 ‘ead(inv)
® . D sr:2
sr:l
® o ¢



Other Rule Learning Approaches

* Neural logic machines (Dong et al. 2019)
* Neural theorem provers (Rocktiaschel and Riedel, 2017)
* Relation-set following (Cohen et al, 2019)

Path ranking (Lao and Cohen, 2010)
DeepPath (Xiong et al. 2017)
DIVA (Chen et al. 2018)

Probabilistic personalized page rank (Wang et al. 2013)

 AMIE+ (Galarraga et al. 2015)



Conclusion

* Part I: Reasoning in Continuous Space
* TransE, TransR, RotatE

* Part II: Symbolic Logic Reasoning
* Logic programming
* Probabilistic logic programming (Markov Logic Networks)

* Part III: Neural-Symbolic Logic Reasoning
* pLogicNet, ExpressGNN

* Part I'V: Logic Rule Induction/Learning
* Inductive logic programming
* Neural logic programming
* RNNLogic



Future Directions

* Few-shot Learning
 Can we reason with a few limited number of facts for each relation

* Integrate text + knowledge graph for reasoning
* Unstructured data are huge but noisy

* Combining System I and II reasoning

* Knowledge graph reasoning are mainly System II reasoning
* How to integrate with system I (perception)
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