Graph Representation Learning and Application to Drug Discovery

Jian Tang

HEC Montreal

CIFAR AI Chair, Mila

Homepage: www.jian-tang.com

Artificial Intelligence: the Fourth Industrial Revolution

- Artificial Intelligence
 - "the term is often used to describe machines (or computers) that mimic "cognitive" functions that humans associate with the human mind, such as "learning" and "problem solving"." -- Wikipedia

-image from Internet

Applications

Machine Learning

Support vector machines

• "Machine learning is a field of computer science that uses statistical techniques to give computer systems the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed."

-Wikipedia X_2 **Hand-crafted** Simple Trainable Classifier **Feature Extractor** e.g., SVM, LR Domain experts

Deep Learning = Feature Representation Learning

• Algorithms that allow to learn from features from data (a.k.a, End-to-end learning)

Simple Trainable Classifier

e.g., SVM, LR

Applications of Deep Learning

Social Networks

Facebook

Twitter

Protein-Protein Interaction Graph

Drug-Protein Interaction Graph

Knowledge Graphs

- Multiple types of edges
 - E.g. Co_founder, Based_in, Located_In
- A set of facts represented as triplets
 - (Bill_Gates, Co_founder, Microsoft)

Molecules

Various Applications on Graphs

- Predicting political preference of Facebook users?
- Recommending friends in social networks
- Predicting the roles of proteins in a protein-protein interaction graphs
- Predicting the effective drugs for a target disease in a biomedical knowledge graph, a.k.a. drug repurposing
- Predicting the chemical properties of molecules
- •
- Most of these applications require good feature representation of graphs!!

Research Problem (1): Node Representation Learning

- Represent each node as a low-dimensional vector
 - E.g. social networks
 - Biomedical knowledge graphs (relationships between diseases, proteins, drugs and symptoms)

Research Problem (2): Whole-Graph Representation Learning and Generation

- Represent the whole graph as a low-dimensional vector
 - Predicting the chemical properties of molecules
- Generate graphs (e.g., molecular structures)
 - e.g., molecule design

Challenges of Graph Representation Learning

- Existing deep neural networks are designed for data with regular-structure
 - images, text, and speech

- Graphs are very complex
 - Arbitrary structures
 - Large-scale: more than millions of nodes and billions of edges
 - Heterogeneous: directed/undirected, binary/weighted/typed

Part I: Graph Representation Learning

Learning Node Representations (LINE, Tang et al. 2015)

- E.g., Facebook social network -> user representations (features)-> friend recommendation
- Protein-Protein network/Gene-gene network -> protein/gene representations

LINE: Large-scale Information Network Embedding (Tang et al. 2015, >2,600 citations)

- Arbitrary types of networks
 - Directed, undirected, and/or weighted
- Clear objective function
 - Preserve the first-order and second-order proximity
- Scalable
 - Asynchronous stochastic gradient descent
 - Millions of nodes and billions of edges: a coupe of hours on a single machine

First-order Proximity

- The local pairwise proximity between the nodes
- However, many links between the nodes are not observed
 - Not sufficient for preserving the entire network structure

Second-order Proximity

"The degree of overlap of two people's friendship networks correlates with the strength of ties between them" -- Mark Granovetter

"You shall know a word by the company it keeps" -- John Rupert Firth

· Proximity between the neighborhood structures of the nodes

Extremely Low-dimensional Representations: 2D/3D for Visualizing Graphs (LargeVis, Tang et al. 2016)

10M Scientific Papers on One Slide

Knowledge Graph Embedding (Sun et al. 2019)

- Learning low-dimensional representations of entities and relations
- Preserve the relationships between entities in low-dimensional spaces
- Task: Link prediction on knowledge graphs

Knowledge Graph Completion

- A fundamental task: predicting missing links
- Key Idea: model and infer the **logical rules** in knowledge graphs according to observed knowledge facts.
- Example:
 - Parents of Parents are Grandparents
 - Husband and wife are inverse to each other
 - A compound treats disease1, disease1 resembles disease 2
 => the compound treats disease 2

Relation Patterns

- Symmetric/Antisymmetric Relations
 - Symmetric: e.g., Marriage
 - Antisymmetric: e.g., Filiation
- **Inverse** Relations
 - Husband and wife
- Composition Relations
 - My mother's husband is my father

Figure: RotatE (Sun et al. 2019)

Graph Vite: A High-performance and General Graph Embedding System (Zhu et al. 2019)

- A system specifically designed for learning graph embeddings with GPUs
- Super efficient!! Take only one minute for learning node representations of a graph with one-million nodes
- https://graphvite.io

Part II: Graph Representation Learning for Drug Discovery

The Process of Drug Discovery

- A very long and costly process
 - On average takes more than 10 years and \$2.5B to get a drug approved
- Big opportunities for AI to accelerate this process

Screen millions of functional molecules; Found by serendipity: Penicillin

Modify the molecule to improve specific properties. e.g. toxicity, SA

In-vitro and in-vivo experiments; synthesis

Multiple Phases

Graphs in Biomedical Domains

Molecules Biomedical Knowledge Graphs

Molecule Properties Prediction

- Predicting the properties of molecules is very important in many stages of drug discovery
 - Virtual screening
- Represent the whole molecule (graph) as a feature vector

Unsupervised and Semi-supervised Learning for Molecular Graph Representation (Sun et al. ICLR 20)

- Most existing work on molecular representation are based on supervised learning with graph neural networks
 - Require a large number of labeled data
- However, the number of labeled data is very limited
- Leverage the unlabeled data!!

Supervised Methods (Gilmer et al. 17)

Unsupervised and semi-supervised methods (Sun et al. 19)

Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR'20

De Novo Molecule Design and Optimization

• Deep generative models for data generation

Image generation (by StyleGAN, From Internet)

Text generated by by GPT-2, Examples from Internet

Graphs?

GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation (Shi & Xu et al. ICLR'20)

- Formulate graph generation as a sequential decision process
 - In each step, generate a new atom
 - Determine the bonds between the new atoms and existing atoms

Molecule Generation

Method	Validity	Validity w/o check	Uniqueness	Novelty	Reconstruction
JT-VAE	100%		$100\%^{\ddagger}$	$100\%^{\ddagger}$	76.7%
GCPN	100%	$20\%^\dagger$	$99.97\%^{\ddagger}$	$100\%^{\ddagger}$	
MRNN	100%	65%	99.89%	100%	
GraphNVP	42.60%		94.80%	100%	100%
GraphAF	100%	68%	99.10%	100%	100%

Goal-Directed Molecule Generation with Reinforcement Learning

- Fine tune the generation policy with reinforcement learning to optimize the properties of generated molecules
- State: current subgraph G_i
- Action: generating a new atom (i.e. $p(X_i|G_i)$) or a new edge $(p(A_{ij}|G_i,X_i,A_{i,1:j-1}))$.
- Reward Design: the properties of molecules (final reward) and chemical validity (intermediate and final reward)

Molecule Optimization

- Properties
 - Penalized logP
 - QED (druglikeness)

Method ZINC (Dataset)	Penalized logP				QED				
Method	1st	2nd	3rd	Validity	1st	2nd	3rd	Validity	
ZINC (Dataset)	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%	
JT-VAE (Jin et al., 2018)	5.30	4.93	4.49	100.0%	0.925	0.911	0.910	100.0%	
GCPN (You et al., 2018a)	7.98	7.85	7.80	100.0%	0.948	0.947	0.946	100.0%	
MRNN ¹ (Popova et al., 2019)	8.63	6.08	4.73	100.0%	0.844	0.796	0.736	100.0%	
GraphAF	12.23	11.29	11.05	100.0%	0.948	0.948	0.947	100.0%	

Constrained Optimization

(c) Constrained optimization

Retrosynthesis Prediction

- Once a molecular structure is designed, how to synthesize it?
- Retrosynthesis planning/prediction
 - Identify a set of reactants to synthesize a target molecule

A Graph to Graphs Framework for Retrosynthesis Prediction (Shi et al. 2020)

- Each molecule is represented as a molecular graph
- Formulate the problem as a graph (product molecule) to a set of graphs (reactants)
- The whole framework are divided into two stages
 - Reaction center identification
 - Graph Translation

The G2Gs Framework (Shi et al. 2020)

Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction

Reaction Center Prediction

An atom pair (i, j) is a reaction center if:

- There is a bond between atom i and atom j in product
- There is no bond between atom i and atom j in reactants

Graph Translation

- Translate the incomplete synthon to the final reactant
- A variational graph to graph framework
 - A latent variable z is introduced to capture the uncertainty during translation

Experiments

- Experiment Setup
 - Benchmark data set USPTO-50K, containing 50k atom-mapped reactions
 - Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Results of all baselines are directly taken from (Dai et al., 2019).

Table 2. Top-k exact match accuracy when reaction class is unknown. Results of all baselines are taken from (Dai et al., 2019).

Methods _		Top-k ac	curacy %		Methods	Top-k accuracy %			
T/Tetrious	1	1 3 5 10		1	3	5	10		
	Temp	olate-free		20	3-	Temp	late-free		
Seq2seq G2Gs	37.4 61.0	52.4 81.3	57.0 86.0	61.7 88.7	Transformer G2Gs	37.9 48.9	57.3 67.6	62.7 72.5	/ 75.5
	Temp	late-based				Templ	ate-based		
Retrosim Neuralsym GLN	52.9 55.3 64.2	73.8 76.0 79.1	81.2 81.4 85.2	88.1 85.1 90.0	Retrosim Neuralsym GLN	37.3 44.4 52.5	54.7 65.3 69.0	63.3 72.4 75.6	74.1 78.9 83.7

Going Beyond 2D Graphs: 3D Structures

- The chemical/physical properties of molecules are determined by their 3D structures (a.k.a. conformations)
- Predicting stable 3D conformations given a molecular approach

- Traditional approaches
 - Molecular dynamics, Markov chain Monte Carlo
 - Very computational Expensive

Our Solution: Data-Driven Approaches with Deep Generative Models

• Train a probabilistic model over conformations R given a molecular graph G, i.e., P(R|G)

Examples

Graph	1	Conformations										
	***	**	**	**	**	**	Angel .	Angle.	**	**		
N an	afe	100	age.	ye	Y.	Mg.	*	my s	4	7		
	**	pro-	*	100	*	14	100	**	**	12		
NH NH		t	A.	××	3.78 <u>0</u> 0	A	B	Aso	23	N.		
HO COM	**		348	**		8. J. J.	***	**	**	*		
and	*Cot	KA	KA	KA	KA	83	n de	by	54	THE		
ayo	#4	A T	A	HA	p p	44	AN	X	***	****		
P	to the	phy	toda,	ALP.	VA.	MA.	Some	- Can	A Charles	A CONTRACTOR OF THE PARTY OF TH		
OND	****	****	×	pp	Dy	XXX	W. CO	Aco	Made	a po		

Medical Knowledge Graph Construction (Ongoing)

- >7M Entities, ~300M facts
 - Disease
 - Drug
 - Phenotype
 - Gene
 - Protein
 - Side effect
- Biomedical literature

DrugBank

Comparative Toxicogenomics
Database

Drug Repurposing with Biomedical Knowledge Graph (Ongoing)

- Represent each entity with a feature vector
 - Diseases, drugs, genes, ...

Take Away

- Graph representation learning
 - A growing research topic in machine learning focusing on deep learning for graph-structured data
- Graph representation learning for drug discovery
 - Unsupervised and semi-supervised molecule properties prediction
 - De novo drug design and optimization
 - Retrosynthesis prediction
 - Drug repurposing based on medical knowledge graph
- A huge opportunity for biomedical applications
 - Looking forward to collaborating with you!

Thanks!

- Meng Qu
- Zhaocheng Zhu
- Andreea Deac
- Louis-Pascal Xhonneux
- Shengchao Liu
- Chence Shi
- Minkai Xu

• Collaborators and previous students: Qiaozhu Mei, Yoshua Bengio, Jian-Yun Nie, Pietro Liò, Zhiyuan Liu, Ming Zhang, Jingzhou Liu, Zhiqing Sun, Fanyun Sun, Weiping Song, Mingzhe Wang, Shizhen Xu, Xiaozhi Wang, Tianyu Gao, Hongyu Guo, Jordan Hoffmann, Vikas Verma,....

