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Artificial Intelligence:

the Fourth Industrial Revolution

* Artificial Intelligence

* “the term 1s often used to describe machines (or computers) that mimic
’cognitive* functions that humans associate with the human mind, such as

’learning®* and “’problem solving®.” -- Wikipedia
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Machine Learning

* “Machine learning 1s a field of computer science that uses statistical techniques
to give computer systems the ability to "learn" (1.e., progressively improve
performance on a specific task) with data, without being explicitly programmed.”

-Wikipedia
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Support vector machines - Domain experts
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Deep Learning = Feature Representation

Learning

* Algorithms that allow to learn from features from data (a.k.a, End-to-
end learning)
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lications of Deep Learning
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Social Networks
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Graph from Albert-Laszl6 Barabasi’ s SIGIR09 keynote




Protein-Protein Interaction Graph
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https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-networks



Drug-Protein Interaction Graph
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Knowledge Graphs

* Multiple types of edges
* E.g. Co founder, Based in, Located In

* A set of facts represented as triplets
* (Bill Gates, Co founder, Microsoft)
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Various Applications on Graphs

* Predicting political preference of Facebook users?
* Recommending friends in social networks
* Predicting the roles of proteins in a protein-protein interaction graphs

* Predicting the effective drugs for a target disease in a biomedical
knowledge graph, a.k.a. drug repurposing

* Predicting the chemical properties of molecules

* Most of these applications require good feature representation of
osraphs!!



Research Problem (1): Node
Representation Learning

* Represent each node as a low-dimensional vector

* E.g. social networks

* Biomedical knowledge graphs (relationships between diseases, proteins, drugs and
symptoms)
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Research Problem (2): Whole-Graph
Representation Learning and Generation

* Represent the whole graph as a low-dimensional vector
* Predicting the chemical properties of molecules

* Generate graphs (e.g., molecular structures)
* e.g., molecule design

molecular graph




Challenges of Graph Representation
Learning

 Existing deep neural networks are designed for data with regular-structure
* 1mages, text, and speech
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layer 2
* Graphs are very complex

 Arbitrary structures
* Large-scale: more than millions of nodes and billions of edges
* Heterogeneous: directed/undirected, binary/weighted/typed
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Part 1: Graph Representation Learning



Learning Node Representations
(LINE, Tang et al. 2015)

e - Node Classification

| D & - Node Clustering
» GEED @D @D S - -ink Prediction
- Recommendation
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Network Node representations

« E.g., Facebook social network -> user representations (features)-> friend
recommendation
* Protein-Protein network/Gene-gene network -> protein/gene representations

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15.



https://arxiv.org/abs/1503.03578

LINE: Large-scale Information Network
Embedding (Tang et al. 2015, >2,600 citations)

* Arbitrary types of networks
* Directed, undirected, and/or weighted

* Clear objective function
* Preserve the first-order and second-order proximity

e Scalable

* Asynchronous stochastic gradient descent
* Millions of nodes and billions of edges: a coupe of hours on a single machine

19



First-order Proximity

. o

- The local pairwise proximity between the nodes
- However, many links between the nodes are not

observed
- Not sufficient for preserving the entire network structure
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Second-order Proximity

“The degree of overlap of two people’s friendship networks correlates
with the strength of Hes between them --Mark Granovetter

. oo

“You shall know a word by the company it keeps” --Tohn Rupert Firth

- Proximity between the neighborhood structures of the nodes

21



Extremely Low-dimensional Representations:
2D/3D for Visualizing Graphs (LargeVis, Tang
et al. 2016)

S o

High-dimensional Data

Jian Tang, Jingzhou Liu, Ming Zhang and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16.

22


https://arxiv.org/abs/1602.00370
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Knowledge Graph Embedding
(Sun et al. 2019)

* Learning low-dimensional representations of entities and relations
* Preserve the relationships between entities in low-dimensional spaces
 Task: Link prediction on knowledge graphs
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Knowledge Graph Completion

* A fundamental task: predicting missing links

* Key Idea: model and infer the logical rules in knowledge graphs
according to observed knowledge facts.

* Example:

* Parents of Parents are Grandparents

 Husband and wife are inverse to each other

* A compound treats diseasel, diseasel resembles disease 2
=> the compound treats disease 2

25



Relation Patterns

* Symmetric/Antisymmetric Relations b b

* Symmetric: e.g., Marriage .
* Antisymmetric: e.g., Filiation
* Inverse Relations hr

hr-t
 Husband and wife e

 Composition Relations |

My mother’s husband is my father Figure: RotatE (Sun et al. 2019)

Zhiging Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.” ICLR’19.



https://openreview.net/pdf?id=HkgEQnRqYQ

GraphVite: A High-performance and General
Graph Embedding System (Zhu et al. 2019)

* A system specifically designed for learning graph embeddings with GPUs

* Super efficient!! Take only one minute for learning node representations of
a graph with one-million nodes

° https :/ / graphV1te'10 Knowledge Graph Graph & High-dimensional

Node Embedding Embedding Data Visualization
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Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang. “GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding”. WWW’19. 27



https://graphvite.io/
https://arxiv.org/pdf/1903.00757.pdf

Part 11: Graph Representation Learning
for Drug Discovery



The Process of Drug Discovery

* A very long and costly process
* On average takes more than 10 years and $2.5B to get a drug approved

* Big opportunities for Al to accelerate this process

: S Preclinical ..
Lead Discovery Lead Optimization Clinical
Target Study .
2 years 3 years Trial
2 years
Screen millions of Modify the molecule In-vitro and
functional molecplfzs; to improve specific In-Vivo Multiple Phases
Found by serendipity: properties. experiments;

Penicillin e.g. toxicity, SA synthesis



Graphs in Biomedical Domains
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Molecule Properties Prediction

* Predicting the properties of molecules 1s very important in many
stages of drug discovery
* Virtual screening

* Represent the whole molecule (graph) as a feature vector

EA A
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Unsupervised and Semi-supervised Learning

for Molecular Graph Representation (Sun et al.
ICLR 20)

* Most existing work on molecular representation are based on
supervised learning with graph neural networks

* Require a large number of labeled data
* However, the number of labeled data 1s very limited
* Leverage the unlabeled data!!
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: . Unsupervised and semi-supervised methods (Sun et al. 19
Supervised Methods (Gilmer et al. 17) P P ( )
Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning

Gilmer et al. Neural Message Passing for Quantum Chemistry. ICML'17. via Mutual Information Maximization. ICLR’20



De Novo Molecule Design and Optimization

* Deep generative models for data generation

Now, after Sy t sparked this oo
phenarenan

Image generation Text generated by by GPT-2, Graphs?
(by StyleGAN, From Internet) Examples from Internet '



GraphAF: a Flow-based Autoregressive Model
for Molecular Graph Generation
(Shi & Xu et al. ICLR’20)

* Formulate graph generation as a sequential decision process

* In each step, generate a new atom
* Determine the bonds between the new atoms and existing atoms
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Molecule Generation

Method Validity  Validity w/o check

Uniqueness Novelty Reconstruction

JT-VAE 100% —

GCPN 100% 20%"
MRNN 100% 65%

GraphNVP  4260% — —————— — —_

GraphAF ' 100% 68%

100%* 100%* 76.7%

99.97%* 100%* —
99.89% 100% —







Goal-Directed Molecule Generation with
Reinforcement Learning

* Fine tune the generation policy with reinforcement learning to
optimize the properties of generated molecules

* State: current subgraph G;

* Action: generating a new atom (1.e. p(X;|G;)) or a new edge
(p(A;i1Gi, X, Aj1:j-1))

* Reward Design: the properties of molecules (final reward) and
chemical validity (intermediate and final reward)



Molecule Optimization

* Properties

* Penalized logP
* QED (druglikeness)

Penalized logP QED
Method st 2nd  3rd  Validity 1st 2nd  3rd  Validity
ZINC (Dataset) 452 430 423 100.0% 0948 0948 0948 100.0%
JT-VAE (Jinctal, 2018) 530 493 449 1000% 0925 0911 0910 100.0%
GCPN (Youetal,20182)  7.98 785 7.80 100.0% 0.948 0947 0946 100.0%
MRNN! (Popovactal,2019) 863 608 473 100.0% 0844 0796 0736 100.0%
GraphAF 1223 1129 1105 1000% 0.948 0.948 0947 100.0%

P

12.23

-~

11.05

(a) Penalized logP optimization

11.29

—

10.83

0.948 0.948
79 "= 0 ( Br
0.947 0.947

(b) QED optimization



Constrained Optimization
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Retrosynthesis Prediction

* Once a molecular structure is designed, how to synthesize 1t?

* Retrosynthesis planning/prediction

* Identify a set of reactants to synthesize a target molecule

N\ N/v
T

Product (Given)

Predict Reactants
—

Reaction Type
(optional)

Reactant A

Reactant B



A Graph to Graphs Framework for
Retrosynthesis Prediction (Shi et al. 2020)

* Each molecule 1s represented as a molecular graph

* Formulate the problem as a graph (product molecule) to a set of graphs
(reactants)

* The whole framework are divided into two stages
e Reaction center 1identification
* Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
In Submission, 2020.



The G2Gs Framework (Shi et al. 2020)
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Reaction Center Prediction

An atom pair (7, j) 1s a reaction center if:

* There 1s a bond between atom i and atom j in product

* There 1s no bond between atom i and atom ; in reactants
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Graph Translation

* Translate the incomplete synthon to the final reactant

* A variational graph to graph framework
* A latent variable z 1s introduced to capture the uncertainty during translation
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Experiments

* Experiment Setup
* Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

* Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. TabJe 2. Top-k exact match accuracy when reaction class is un-
Results of all baselines are directly taken from (Dai et al., 2019).  known. Results of all baselines are taken from (Dai et al., 2019).

Top-k accuracy % Top-k accuracy %

Methods Methods
1 3 5 10 1 3 ) 10
Template-free Template-free
Seq2seq 374 52.4 57.0 61.7 Transformer 37.9 553 62.7 /
G2Gs 61.0 81.3 86.0 88.7 G2Gs 48.9 67.6 72.5 79.5
Template-based Template-based
Retrosim 329 73.8 81.2 88.1 Retrosim 3713 54.7 63.3 74.1
Neuralsym 353 76.0 81.4 85.1 Neuralsym 44 .4 65.3 12.4 78.9

GLN 64.2 79.1 85.2 90.0 GLN 525 69.0 75.6 83.7




Going Beyond 2D Graphs: 3D Structures

* The chemical/physical properties of molecules are determined by their 3D
structures (a.k.a. conformations)

* Predicting stable 3D conformations given a molecular approach

 Traditional approaches
* Molecular dynamics, Markov chain Monte Carlo
* Very computational Expensive



Our Solution: Data-Driven Approaches
with Deep Generative Models

* Train a probabilistic model over conformations R given a molecular
graph G, 1.e., P(R|G)

gl re(d9) p(R|d,G) E4(R,G)

clJ/H Predict distances for Search 3D coordinates Further optimize the

~c - the input graph. given the distances. generated structures.
|

H
c
H
Input Graph ‘ ‘ ‘

AL Fy p Eg
- : Flow : Gradient MCMC
N(0,1) Dynamics Descent




Examples

Conformations
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Medical Knowledge Graph Construction
(Ongoing)

e >7M Entities, ~300M facts a8
* Disease GD ‘03 Ctd STITCH
* Drug '

o Comparative Toxicogenomics
Phenotype DrugBank Databaseg

* Gene

* Protein SIDER %ISEASE

e Side effect Side Effect Resource NTOLOGY

 Biomedical literature

Pub m ed
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Unifying Biology


http://stitch.embl.de/cgi/input.pl?UserId=I1jqxFrUtIjl&sessionId=ymD4LkudOtr9

Drug Repurposing with Biomedical
Knowledge Graph (Ongoing)

* Represent each entity with a feature vector
* Diseases, drugs, genes, ...
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Take Away

* Graph representation learning
* A growing research topic in machine learning focusing on deep learning for
graph-structured data
* Graph representation learning for drug discovery
* Unsupervised and semi-supervised molecule properties prediction
* De novo drug design and optimization
* Retrosynthesis prediction
* Drug repurposing based on medical knowledge graph

* A huge opportunity for biomedical applications
* Looking forward to collaborating with you!
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