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Artificial Intelligence:
the Fourth Industrial Revolution
• Artificial Intelligence
• “the term is often used to describe machines (or computers) that mimic 

”cognitive“ functions that humans associate with the human mind, such as 
”learning“ and ”problem solving“.” -- Wikipedia

-image from Internet

https://en.wikipedia.org/wiki/Human_mind


Applications



Machine Learning
• “Machine learning is a field of computer science that uses statistical techniques 

to give computer systems the ability to "learn" (i.e., progressively improve 
performance on a specific task) with data, without being explicitly programmed.”

-Wikipedia

Support vector machines

Hand-crafted
Feature Extractor

Simple Trainable Classifier
e.g., SVM, LR

Domain experts

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Data


Deep Learning = Feature Representation
Learning
• Algorithms that allow to learn from features from data (a.k.a, End-to-

end learning)

Deep Neural Networks

Trainable
Feature Extractor

Simple Trainable Classifier
e.g., SVM, LR

Domain experts



Applications of Deep Learning

Image

Speech

Natural language

Deep Learning

Graphs



Social Networks

Facebook Twitter



8
Graph from Albert-László Barabási’ s SIGIR09 keynote



Protein-Protein Interaction Graph

https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-networks



Drug-Protein Interaction Graph

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002503



Knowledge Graphs
• Multiple types of edges

• E.g. Co_founder, Based_in, Located_In
• A set of facts represented as triplets

• (Bill_Gates, Co_founder, Microsoft)



Molecules

Under review as a conference paper at ICLR 2020
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Figure 3: 50 molecules sampled from prior.
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Various Applications on Graphs

• Predicting political preference of Facebook users?
• Recommending friends in social networks
• Predicting the roles of proteins in a protein-protein interaction graphs
• Predicting the effective drugs for a target disease in a biomedical

knowledge graph, a.k.a. drug repurposing
• Predicting the chemical properties of molecules
• …
• Most of these applications require good feature representation of 

graphs!!



Research Problem (1): Node 
Representation Learning
• Represent each node as a low-dimensional vector

• E.g. social networks
• Biomedical knowledge graphs (relationships between diseases, proteins, drugs and

symptoms)

Network Node representations



Research Problem (2): Whole-Graph
Representation Learning and Generation
• Represent the whole graph as a low-dimensional vector

• Predicting the chemical properties of molecules
• Generate graphs (e.g., molecular structures)

• e.g., molecule design

molecular graph

Under review as a conference paper at ICLR 2020
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Challenges of Graph Representation
Learning
• Existing deep neural networks are designed for data with regular-structure

• images, text, and speech

• Graphs are very complex
• Arbitrary structures
• Large-scale: more than millions of nodes and billions of edges
• Heterogeneous: directed/undirected, binary/weighted/typed

16



Part I: Graph Representation Learning



Learning Node Representations
(LINE, Tang et al. 2015)

• Node Classification
• Node Clustering
• Link Prediction
• Recommendation
• …

• E.g., Facebook social network -> user representations (features)-> friend
recommendation

• Protein-Protein network/Gene-gene network -> protein/gene representations

Network Node representations

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15.

https://arxiv.org/abs/1503.03578


LINE: Large-scale Information Network
Embedding (Tang et al. 2015, >2,600 citations)
• Arbitrary types of networks
• Directed, undirected, and/or weighted

• Clear objective function
• Preserve the first-order and second-order proximity

• Scalable
• Asynchronous stochastic gradient descent
• Millions of nodes and billions of edges: a coupe of hours on a single machine

19



First-order Proximity

• The local pairwise proximity between the nodes
• However, many links between the nodes are not

observed
• Not sufficient for preserving the entire network structure

20



Second-order Proximity

• Proximity between the neighborhood structures of the nodes

“The degree of overlap of two people’s friendship networks correlates 
with the strength of ties between them” --Mark Granovetter

“You shall know a word by the company it keeps”  --John Rupert Firth 

21



Extremely Low-dimensional Representations: 
2D/3D for Visualizing Graphs (LargeVis, Tang
et al. 2016)

…. ….

….
…. ….

….

Networks 2D/3D Layout

Heatmaps

Network DiagramsScatter Plots

….

High-dimensional Data

Jian Tang, Jingzhou Liu, Ming Zhang and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16.
22

https://arxiv.org/abs/1602.00370


10M Scientific Papers on One Slide

23



Knowledge Graph Embedding
(Sun et al. 2019)
• Learning low-dimensional representations of entities and relations
• Preserve the relationships between entities in low-dimensional spaces
• Task: Link prediction on knowledge graphs

friend ? ?



Knowledge Graph Completion

• A fundamental task: predicting missing links 
• Key Idea: model and infer the logical rules in knowledge graphs 

according to observed knowledge facts.
• Example:

• Parents	of	Parents	are	Grandparents
• Husband and wife are inverse to each other
• A compound treats disease1, disease1 resembles disease 2
=> the compound treats disease 2

25



Relation Patterns

• Symmetric/Antisymmetric Relations
• Symmetric: e.g., Marriage
• Antisymmetric: e.g., Filiation

• Inverse Relations
• Husband and wife

• Composition Relations
• My mother’s husband is my father

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.” ICLR’19.

Figure: RotatE (Sun et al. 2019)

https://openreview.net/pdf?id=HkgEQnRqYQ


GraphVite: A High-performance and General 
Graph Embedding System (Zhu et al. 2019)
• A system specifically designed for learning graph embeddings with GPUs
• Super efficient!! Take only one minute for learning node representations of

a graph with one-million nodes
• https://graphvite.io

Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang. “GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding”. WWW’19.
27

https://graphvite.io/
https://arxiv.org/pdf/1903.00757.pdf


Part II: Graph Representation Learning
for Drug Discovery



The Process of Drug Discovery
• A very long and costly process
• On average takes more than 10 years and $2.5B to get a drug approved

• Big opportunities for AI to accelerate this process

Lead Discovery
2 years

Lead Optimization
3 years

Preclinical
Study

2 years

Clinical 
TrialTarget

Screen millions of 
functional molecules;
Found by serendipity: 
Penicillin

Modify the molecule 
to improve specific 
properties. 
e.g. toxicity, SA

In-vitro and 
in-vivo 
experiments;
synthesis

Multiple Phases



Graphs in Biomedical Domains

Biomedical Knowledge Graphs

Under review as a conference paper at ICLR 2020
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Molecule Properties Prediction
• Predicting the properties of molecules is very important in many 

stages of drug discovery
• Virtual screening

• Represent the whole molecule (graph) as a feature vector



Unsupervised and Semi-supervised Learning 
for Molecular Graph Representation (Sun et al.
ICLR 20)
• Most existing work on molecular representation are based on 

supervised learning with graph neural networks
• Require a large number of labeled data

• However, the number of labeled data is very limited
• Leverage the unlabeled data!!

Figure 2: Illustration of the semi-supervised version of InfoGraph (InfoGraph*). There are two separate encoders with
the same architecture, one for the supervised task and the other trained using both labeled and unlabeled data with an
unsupervised objective (eq. (4)). We encourage the mutual information of the two representations learned by the two
encoders to be high by deploying a discriminator that takes a pair of representation as input and determines whether
they are from the same input graph.

where h
i
� is the summarized patch representation centered at node i and H�(G) is the global representation after

applying READOUT. Note that here we slightly abuse the notation of h.

We define our mutual information (MI) estimator on global/local pairs, maximizing the estimated MI over the given
dataset G := {Gj 2 G}Nj=1:

�̂,  ̂ = argmax
�, 

X

G2G

1

|G|
X

u2G

I�, (
~h
u
�;H�(G)). (4)

I�, is the mutual information estimator modeled by discriminator T and parameterized by a neural network with
parameters  . We use the Jensen-Shannon MI estimator (following the formulation of [41]),

I�, (h
i
�(G);H�(G)) :=

EP[�sp(�T�, (
~h
i
�(x), H�(x)))]� EP⇥P̃[sp(T�, (~hi

�(x
0
), G�(x)))] (5)

where x is an input sample, x0 (negative sample) is an input sampled from P̃ = P, a distribution identical to the
empirical probability distribution of the input space, and sp(z) = log(1 + e

z
) is the softplus function. In practice, we

generate negative samples using all possible combinations of global and local patch representations across all graph
instances in a batch.

Since H�(G) is encouraged to have high MI with patches that contain information at all scales, this favours encoding
aspects of the data that are shared across patches and aspects that are shared across scales. The algorithm is illustrated
in Fig. 1.

It should be noted that our model is similar to Deep Graph Infomax (DGI) [55], a model proposed for learning
unsupervised node embeddings. However, there are important design differences due to the different problems that we
are focusing on. First, in DGI they use random sampling to obtain negative samples due to the fact that they are mainly
focusing on learning node embeddings on a graph. However, contrastive methods require a large number of negative
samples to be competitive [17], thus the use of batch-wise generation of negative samples is crucial as we are trying to
learn graph embeddings given many graph instances.Second, the choice of graph convolution encoders is also crucial.
We use GIN [60] while DGI uses GCN [26] as GIN provides a better inductive bias for graph level applications. Graph
neural network designs should be considered carefully so that graph representations can be discriminative towards
other graph instances. For example, we use sum over mean for READOUT and that can provide important information
regarding the size of the graph.

5

Supervised Methods (Gilmer et al. 17) Unsupervised and semi-supervised methods (Sun et al. 19)

Gilmer et al. Neural Message Passing for Quantum Chemistry. ICML’17.
Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning 
via Mutual Information Maximization. ICLR’20



De Novo Molecule Design and Optimization

• Deep generative models for data generation

Text generated by by GPT-2,
Examples from Internet

Image generation
(by StyleGAN, From Internet) Graphs?

Under review as a conference paper at ICLR 2020
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GraphAF: a Flow-based Autoregressive Model
for Molecular Graph Generation
(Shi & Xu et al. ICLR’20)
• Formulate graph generation as a sequential decision process
• In each step, generate a new atom
• Determine the bonds between the new atoms and existing atoms

Under review as a conference paper at ICLR 2020
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(b) Autoregressive Flow

Figure 1: Overview of the proposed GraphAF model. Superscripts of ✏Xi , ✏
A
ij , z

X
i , z

A
ij is are omitted

for simplicity. (a) Illustration of the phases of the generative procedure. Newly generated node/edge
is marked in red. We begin with a virtual graph where there is no items. Then we alternately use
NodeMLP and EdgeMLP to convert the node embeddings from R-GCN to parameters of affine trans-
formation, and map the random sampled vector to predicted atom/bond types. (b) Another diagram
of GraphAF from the perspective of autoregressive flow. Current state corresponds to highlighted
the step in figure 1(a).

X
⇡
i = argmax(zXi ) = argmax(✏Xi � ↵

X
i + µ

X
i ), where ✏

X
i 2 Rd and ✏

X
i ⇠ N (0, 1)

Ã
⇡
ij = argmax(zAij) = argmax(✏Aij � ↵

A
ij + µ

A
ij), where ✏

A
ij 2 Rb and ✏

A
ij ⇠ N (0, 1)

(7)

where � denotes the element-wise multiplication. ✏
X
i and ✏

A
ij are random vectors that GraphAF

uses internally to generate node and edge, which are typically i.i.d. drawn from a multi-dimensional
standard Gaussian.

Valency Check During Sampling. However, as mentioned above, in GraphAF the conditional dis-
tributions of edge types are modeled by an invertible normalizing flow, i.e., all edge types in the
chemical space are mapped into the latent space. Therefore, any graph including invalid molecule
can still be generated even the model is trained well for modeling the datasets. Thanks to the sequen-
tial generation manner of GraphAF, we can explicitly apply a valency constraint during sampling
to check whether current bonds have exceeded the allowed valency, which has also been adopted in
previous models (You et al., 2018a; Popova et al., 2019). Let |A⇡

ij | denote the order of the bond A
⇡
ij ,

then in each step when sampling the latent ✏Aij and get the edge A⇡
ij by Eq. 7, we check the following

valency constraint for the i
th and j

th atoms:

X

j

|A⇡
ij |+ k  Valency(X⇡

i ) and
X

i

|A⇡
ij |+ k  Valency(X⇡

j ) (8)

If the newly added bond break the valency constraint, we just reject the variable ✏
A
ij , sample another

in the latent space and invert it to band feature. Finally, the generation process will end once one of
the following conditions if satisfied: 1) the graph size reach the pre-sampled max-size n; 2) there
is no bond linked between the newly generated atom and previous sub-graph. After this, hydrogens
will be added to the atoms that have not filled up their valencies.

4.3 EFFICIENT PARALLEL TRAINING

As defined in 7, the sampling process maps the latent space (✏A, ✏X) to continuous feature (zA, zX),
and then further to molecular space (A,X) via argmax. In this process, GraphAF can be seen as
a transformation f : (✏A, ✏X) ! (zA, zX), where (✏A, ✏X) are sampled from N (0, 1). Since

5



Molecule Generation
Under review as a conference paper at ICLR 2020

Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
† is obtained by running GCPN’s open-source code. Results with ‡ are taken from Popova et al. (2019).

Method Validity Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%‡ 100%‡ 76.7%
GCPN 100% 20%† 99.97%‡ 100%‡ —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%
GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC (Dataset) 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN (You et al., 2018a) 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MRNN1 (Popova et al., 2019) 8.63 6.08 4.73 100.0% 0.844 0.796 0.736 100.0%

GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al., 2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Ba, 2014) to optimize our model. Full training details can be found in Appendix C.

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table 2 shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table 2, JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al., 2018a) to make results comparable. To perform this task,

1The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al., 2019) using GCPN’s script.

7



Under review as a conference paper at ICLR 2020
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Figure 3: 50 molecules sampled from prior.
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Goal-Directed Molecule Generation with 
Reinforcement Learning
• Fine tune the generation policy with reinforcement learning to 

optimize the properties of generated molecules
• State: current subgraph 𝐺!
• Action: generating a new atom (i.e. p(𝑋!|𝐺!)) or a new edge 

(p(𝐴!"|𝐺! , 𝑋! , 𝐴!,$:"&$)).
• Reward Design: the properties of molecules (final reward) and 

chemical validity (intermediate and final reward)



Molecule Optimization

• Properties
• Penalized logP
• QED (druglikeness)

Under review as a conference paper at ICLR 2020

ure 2(a) and 2(b) show some best molecules found by the model and we present more samples with
peanalized logP ranging from 5 to 10 in appendix 3
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Figure 2: Molecule samples generated in property optimization and constrained optimization tasks.
(a) Molecule with high penalized logP scores. (b) Molecule with high QED scores. (c) Two pairs of
molecules in constrained optimization with similarity 0.88(top) and 0.65(bottom)

Constrained Optimization. The goal of this task is to modify the given molecule to improve
specified property under similarity constraint. Following (Jin et al., 2018; You et al., 2018a), we
choose to optimize penalized logP for 800 molecules in ZINC250k with lowest scores and we adopt
the same similarity constraint as they do in this task.

For this task, we first sort all the molecules in ZINC250k in descending order according to penal-
ized logP score and calculate two average latent zpos, zneg using first, second half of the molecules
respectively. Then we treat the difference (zpos � zneg) as the direction for latent manipulation.
More specifically, given a molecule to optimize, we first encode the molecule into latent vector,
shift the latent vector towards the pre-calculated direction and finally inverse the latent back to the
molecule. Thanks to the invertibility and latent-smoothness of flow-based models, hopefully we can
get optimized molecules while satisfying similarity constraint. Empirically, we find that only mod-
ifying the last few dimensions of the latent vector under a specific BFS order will yield molecules
with high simlarity and improvement. Compared to other constrained optimization algorithm, this
method doesn’t require training a new policy network or learning a score estimator and thus is easy
to use and implement. Note that this method has been previously used in modifying attributes of
images (Kingma & Dhariwal, 2018) and has achieved great success. We optimize each molecule
for 200 times and report the success rate as well as the mean and standard deviation of improve-
ment and similarity between original and improved molecules among successful cases in table 4.
Our method significantly outperforms the GCPN with 295% higher penalized logP improvement on
average and achieves reasonable success rate by simply manipulating the latent vector without learn-
ing. Figure 2(c) visualizes two optimization results, indicating that our method is able to improve
the penalized logP score significantly while maintaining high similarity between molecule pairs.
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9

Under review as a conference paper at ICLR 2020

Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
† is obtained by running GCPN’s open-source code. Results with ‡ are taken from Popova et al. (2019).

Method Validity Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%‡ 100%‡ 76.7%
GCPN 100% 20%† 99.97%‡ 100%‡ —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%
GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC (Dataset) 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN (You et al., 2018a) 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MRNN1 (Popova et al., 2019) 8.63 6.08 4.73 100.0% 0.844 0.796 0.736 100.0%

GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al., 2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Ba, 2014) to optimize our model. Full training details can be found in Appendix C.

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table 2 shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table 2, JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al., 2018a) to make results comparable. To perform this task,

1The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al., 2019) using GCPN’s script.
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Constrained Optimization
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ure 2(a) and 2(b) show some best molecules found by the model and we present more samples with
peanalized logP ranging from 5 to 10 in appendix 3
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Constrained Optimization. The goal of this task is to modify the given molecule to improve
specified property under similarity constraint. Following (Jin et al., 2018; You et al., 2018a), we
choose to optimize penalized logP for 800 molecules in ZINC250k with lowest scores and we adopt
the same similarity constraint as they do in this task.

For this task, we first sort all the molecules in ZINC250k in descending order according to penal-
ized logP score and calculate two average latent zpos, zneg using first, second half of the molecules
respectively. Then we treat the difference (zpos � zneg) as the direction for latent manipulation.
More specifically, given a molecule to optimize, we first encode the molecule into latent vector,
shift the latent vector towards the pre-calculated direction and finally inverse the latent back to the
molecule. Thanks to the invertibility and latent-smoothness of flow-based models, hopefully we can
get optimized molecules while satisfying similarity constraint. Empirically, we find that only mod-
ifying the last few dimensions of the latent vector under a specific BFS order will yield molecules
with high simlarity and improvement. Compared to other constrained optimization algorithm, this
method doesn’t require training a new policy network or learning a score estimator and thus is easy
to use and implement. Note that this method has been previously used in modifying attributes of
images (Kingma & Dhariwal, 2018) and has achieved great success. We optimize each molecule
for 200 times and report the success rate as well as the mean and standard deviation of improve-
ment and similarity between original and improved molecules among successful cases in table 4.
Our method significantly outperforms the GCPN with 295% higher penalized logP improvement on
average and achieves reasonable success rate by simply manipulating the latent vector without learn-
ing. Figure 2(c) visualizes two optimization results, indicating that our method is able to improve
the penalized logP score significantly while maintaining high similarity between molecule pairs.
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Retrosynthesis Prediction

• Once a molecular structure is designed, how to synthesize it?
• Retrosynthesis planning/prediction
• Identify a set of reactants to synthesize a target molecule
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A Graph to Graphs Framework for 
Retrosynthesis Prediction (Shi et al. 2020)
• Each molecule is represented as a molecular graph
• Formulate the problem as a graph (product molecule) to a set of graphs 

(reactants)
• The whole framework are divided into two stages
• Reaction center identification
• Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
In Submission, 2020.



The G2Gs Framework (Shi et al. 2020)
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Reaction Center Prediction
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An atom pair (i, j) is a reaction center if: 

• There is a bond between atom i and atom j in product

• There is no bond between atom i and atom j in reactants



Graph Translation

• Translate the incomplete synthon to the final reactant
• A variational graph to graph framework
• A latent variable z is introduced to capture the uncertainty during translation



Experiments
• Experiment Setup

• Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

• Evaluation metrics: top-𝑘 exact match (based on canonical SMILES) accuracy



Going Beyond 2D Graphs: 3D Structures
• The chemical/physical properties of molecules are determined by their 3D 

structures (a.k.a. conformations)
• Predicting stable 3D conformations given a molecular approach

• Traditional approaches
• Molecular dynamics, Markov chain Monte Carlo
• Very computational Expensive

Under review as a conference paper at ICLR 2021
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuous Flow (CGCF); 2) search the possible 3D coordinates according to the generated distances and 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R|d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting term E�(R,G):

p✓,�(R|G) / p✓(R|G) · exp(�E�(R,G)). (5)

The tilting term is directly defined on the joint distribution of R and G, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,�(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model E�(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t1

t0

f✓(d(t), t;G)dt, d(t0) ⇠ N (0, I) (6)

where the dynamic f✓ is implemented by Message Passing Neural Networks (MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of the dynamic f✓ for all distances
independently. As t1 ! 1, our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓ allows us to not only conduct fast sampling,
but also easily optimize the parameter set ✓ by minimizing the exact negative log-likelihood:

Lmle(d,G; ✓) = �Epdata log p✓(d|G) = �Epdata


log p(d(t0)) +

Z t1

t0

Tr

✓
@f✓,G
@d(t)

◆
dt

�
. (7)
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuous Flow (CGCF); 2) search the possible 3D coordinates according to the generated distances and 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R|d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting term E�(R,G):

p✓,�(R|G) / p✓(R|G) · exp(�E�(R,G)). (5)

The tilting term is directly defined on the joint distribution of R and G, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,�(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model E�(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t1

t0

f✓(d(t), t;G)dt, d(t0) ⇠ N (0, I) (6)

where the dynamic f✓ is implemented by Message Passing Neural Networks (MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of the dynamic f✓ for all distances
independently. As t1 ! 1, our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓ allows us to not only conduct fast sampling,
but also easily optimize the parameter set ✓ by minimizing the exact negative log-likelihood:

Lmle(d,G; ✓) = �Epdata log p✓(d|G) = �Epdata


log p(d(t0)) +

Z t1

t0

Tr

✓
@f✓,G
@d(t)

◆
dt

�
. (7)
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuous Flow (CGCF); 2) search the possible 3D coordinates according to the generated distances and 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R|d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting term E�(R,G):

p✓,�(R|G) / p✓(R|G) · exp(�E�(R,G)). (5)

The tilting term is directly defined on the joint distribution of R and G, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,�(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model E�(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t1

t0

f✓(d(t), t;G)dt, d(t0) ⇠ N (0, I) (6)

where the dynamic f✓ is implemented by Message Passing Neural Networks (MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of the dynamic f✓ for all distances
independently. As t1 ! 1, our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓ allows us to not only conduct fast sampling,
but also easily optimize the parameter set ✓ by minimizing the exact negative log-likelihood:

Lmle(d,G; ✓) = �Epdata log p✓(d|G) = �Epdata


log p(d(t0)) +

Z t1

t0

Tr

✓
@f✓,G
@d(t)

◆
dt

�
. (7)
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuous Flow (CGCF); 2) search the possible 3D coordinates according to the generated distances and 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R|d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting term E�(R,G):

p✓,�(R|G) / p✓(R|G) · exp(�E�(R,G)). (5)

The tilting term is directly defined on the joint distribution of R and G, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,�(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model E�(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t1

t0

f✓(d(t), t;G)dt, d(t0) ⇠ N (0, I) (6)

where the dynamic f✓ is implemented by Message Passing Neural Networks (MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of the dynamic f✓ for all distances
independently. As t1 ! 1, our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓ allows us to not only conduct fast sampling,
but also easily optimize the parameter set ✓ by minimizing the exact negative log-likelihood:

Lmle(d,G; ✓) = �Epdata log p✓(d|G) = �Epdata


log p(d(t0)) +

Z t1

t0

Tr

✓
@f✓,G
@d(t)

◆
dt

�
. (7)
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Examples
Under review as a conference paper at ICLR 2021

demonstrate that our proposed framework holds the high capacity to model the chemical structures
in the 3D coordinates.

Figure 3: Visualizations of generated graphs from our proposed method. In each row, we show multiple
generated conformations for one molecular graph. For the top 5 rows, the graphs are chosen from the small
molecules in GEOM-QM9 test dataset; and for the bottom 4 rows, graphs are chosen from the larger molecules
in GEOM-Drugs test dataset. C, O, H, S and CI are colored gray, red, white, yellow and green respectively.

H MORE RESULTS OF COVERAGE SCORE

We give more results of the coverage (COV) score with different threshold � in Fig. 4. As shown in
the figure, our proposed method can consistently outperform the previous state-of-the-art baselines
CVGAE and GraphDG, which demonstrate the effectiveness of our model.

GEOM-QM9 GEOM-QM9 (FF)
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GEOM-Drugs GEOM-Drugs (FF)
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Figure 4: Curves of the averaged coverage score with different RMSD thresholds on GEOM-QM9 (left two)
and GEOM-Drugs (right two) datasets. The first and third curves are results of only the generative models,
while the other two are results when further optimized with rule-based force fields.

14

NNH

O

N

NH

O

O
O

N

O

NH
NH

O

N
O

O



Medical Knowledge Graph Construction
(Ongoing)
• >7M Entities, ~300M facts
• Disease
• Drug
• Phenotype
• Gene
• Protein
• Side effect

• Biomedical literature

DrugBank
Comparative Toxicogenomics

Database 

STITCH

http://stitch.embl.de/cgi/input.pl?UserId=I1jqxFrUtIjl&sessionId=ymD4LkudOtr9


Drug Repurposing with Biomedical
Knowledge Graph (Ongoing)
• Represent each entity with a feature vector
• Diseases, drugs, genes, …

?



Take Away

• Graph representation learning
• A growing research topic in machine learning focusing on deep learning for

graph-structured data

• Graph representation learning for drug discovery
• Unsupervised and semi-supervised molecule properties prediction
• De novo drug design and optimization
• Retrosynthesis prediction
• Drug repurposing based on medical knowledge graph

• A huge opportunity for biomedical applications
• Looking forward to collaborating with you!
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