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The Process of Drug Discovery

* A very long and costly process
* On average takes more than 10 years and $2.5B to get a drug approved

* Big opportunities for Al to accelerate this process
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Molecule Properties Prediction

* Predicting the properties of molecules or compounds 1s a fundamental
problem 1n drug discovery

* Each molecule 1s represented as a graph
* The fundamental problem: how to represent a whole molecule (graph)



Graph Neural Networks

* Techniques for learning node/graph representations

* Graph convolutional Networks (Kipf et al. 2016)
* Graph attention networks (VeliCkovic et al. 2017)

* Neural Message Passing (Gilmer et al. 2017)

MESSAGE PASSING: M, (h%, hE, e,.) W '/O

AGGREGATE :  mk*1 = AGGREGATE{M, (h%, hl, e,,):w € N(v)} 8\/

COMBINE : Rk = COMBINE(RE, mk*1) O/

READOUT: g = READOUT{hY: v € G}



InfoGraph: Unsupervised and Semi-supervised
Whole-Graph Representation Learning
(Sun et al. ICLR’20)

* For supervised methods based on graph neural networks, a large
number of labeled data are required for training

* In the domain of drug discovery, the number of labeled data are
limited
* A large amount of unlabeled data (molecules) are available

* This work: how to effectively learn whole graph representations in
unsupervised or semi-supervised fashion

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual
Information Maximization. ICLR’20.



InfoGraph: Unsupervised Whole-Graph
Representation Learning (Sun et al. ICLR’20)

* Maximizing the mutual information between the whole graph
representation H,(G) and all the sub-structure representation »; .

* Ensure the graph representation capture the predominant information among
all the substructures

* K-layer graph neural networks:
h(®) — COMBINE™®) (hg’H),AGGREGATE““) ({ (hg’H), p(k=1), ew) ueN @)}))

* Summarize the local structure information at every node i:
hi, = CONCAT({h{" 1K )
* Summarize the information of the whole graph:

Hy(G) = READOUT({h}}i,)



InfoGraph*: Semi-supervised Graph
Representation Learning (Sun et al. ICLR’20)

* Two different encoders for the supervised and unsupervised tasks

* Maximize the mutual information of the representations learned by the
two encoders at all levels (or layers)

Label < - » Prediction
rvise
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Results on Graph Classification and
Regression

Dataset MUTAG PTC-MR RDT-B RDT-M5K IMDB-B IMDB-M
(No. Graphs) 188 344 2000 4999 1000 1500
(No. classes) 2 2 2 5 2 3
(Avg. Graph Size) 17.93 14.29 429.63 508.52 19.77 13.00
Graph Kernels
RW [14] 83.72+ 1.50 | 57.85+ 1.30 OMR OMR 50.68 + 0.26 | 34.65+0.19 Table 1: Graph classification accu racy
SP (3] 85.22+2.43 | 58.24+244 | 64.11+0.14 | 39.55+0.22 | 55.60 £ 0.22 | 37.99 % 0.30 ith ised hod
GK [55] 81.66+2.11 | 57.26+1.41 | 77.34+0.18 | 41.01+0.17 | 65.87+0.98 | 43.80 & 0.38 with unsupervised methods
WL [54] 80.72+3.00 | 57.07+0.49 | 68.82+0.41 | 46.06+0.21 | 72.30 +3.44 | 46.95+ 0.46
DGK [68] 87.44+2.72 | 60.08+2.55 | 78.04+0.39 | 41.27+0.18 | 66.96 +0.56 | 44.55+ 0.52
MLG [28] 87.94+ 161 | 63.26+ 1.48 > 1 Day > 1 Day 66.55 + 0.25 | 41.17 % 0.03
Other Unsupervised Methods
node2vec [17] 72.63+10.20 | 58.58 & 8.00 - - - -
sub2vec [1] 61.05+15.80 | 59.99+6.38 | 71.48+0.41 | 36.68+0.42 | 5526+ 1.54 | 36.67 +0.83
graph2vec [38] 83.15+9.25 | 60.17+6.86 | 75.78+1.03 | 47.86+0.26 | 71.1+0.54 | 50.44 + 0.87
InfoGraph 89.01+1.13 | 61.65+1.43 | 82.50+1.42 | 53.46 +1.03 | 73.03+ 0.87 | 49.69 + 0.53
[ Taet Mu (0) | Alpha (1) | HOMO (2) | LUMO (3) | Gap (4) | R2(5) | ZPVE®) | U0(7) | U®) | H©) | G(10) | Cv (1)
MAE 03201 | 05792 | 0.0060 0.0062 | 0.0091 | 10.0469 | 0.0007 | 0.3204 | 0.2934 | 0.2722 | 0.2948 | 0.2368 ) )
Table 2: Results of semi-supervised
Semi-Supervised Error Ratio .
Mean-Teachers | 1.09 1.00 0.99 1.00 097 | 052 0.77 116 | 093 | 079 | 086 | 0.86 experiments on QM9 data set.
InfoGraph 1.02 0.97 1.02 0.99 1ol | 071 096 | 085 | 093 | 093 | 099 | 1.00
TnfoGraph* 0.99 0.94 0.99 0.99 098 | 0.49 052 | 044 | 058 | 057 | 054 | 083
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Molecule Generation and Optimization

* Deep generative models for data generation

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke
perfect English.

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously
unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time
we reached the top of one peak, the water looked blue, with some
crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These
creatures could be seen from the air without having to move too much to
see them — they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that
the creatures also spoke some fairly regular English. Pérez stated, “We
can see, for example, that they have a common ‘language,’ something like
a dialect or dialectic.”

Image generation Text generated by by GPT-2, Graphs?
(by StyleGAN, From Internet) Examples from Internet




GraphAF: an Autoregressive Flow for

Molecular Graph Generation
(Shi & Xu ICLR’20)

* Formulate graph generation as a sequential decision process
* In each step, generate a new atom
* Determine the bonds between the new atoms and existing atoms
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Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
"GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation.” ICLR’20.



GraphAF: an Autoregressive Flow for
Molecular Graph Generation

* Traverse a graph through BFS-order

* Transform each graph into a sequence of nodes and edges

* Defines an invertible mapping from a base distribution (Gaussian
distribution) to the observations ( graph nodes and edge sequences)
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Molecule Generation

* Training Data: ZINC250K

* 250K drug-like molecules with a maximum atom number of 38
* 9 atom types and 3 edge types

Method Validity

Validity w/o check  Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%* 100%* 76.7%
GCPN 100% 7=~~~ 0%t~ 99.97%F T 100%F T oo |
MRNN 100% 1 - ———___ 65% 9089%_ ___100% — _____ - ] |

GraphNVP  42.60% — 94.80% 100% 100%

GraphAF 100% 68% 99.10% 100% 100%







Goal-Directed Molecule Generation with
Reinforcement Learning

* Fine tune the generation policy with reinforcement learning to
optimize the properties of generated molecules

* State: current subgraph G;

* Action: generating a new atom (1.e. p(X;|G;)) or a new edge
(p(A;i1Gi, X, Aj1:j-1))

* Reward Design: the properties of molecules (final reward) and
chemical validity (intermediate and final reward)



Molecule Optimization

* Properties

* Penalized logP
* QED (druglikeness)

Penalized logP QED
Method st  2nd  3rd  Validity 1st  2nd | 3rd  Validity
ZINC (Dataset) 452 430 423 100.0% 0948 0948 0948 100.0%
JT-VAE (Jinctal, 2018) 530 493 449 1000% 0925 0911 0910 100.0%
GCPN (Youetal,20182)  7.98 7.85 7.80 100.0% 0.948 0947 0946 100.0%
MRNN! (Popovactal,2019) 863 608 473 100.0% 0844 079 0736 100.0%
GraphAF 1223 1129 1105 1000% 0.948 0.948 0947 100.0%

P

12.23

-~

11.05

(a) Penalized logP optimization

11.29

—

10.83

0.948 0.948
79 "= 0 [ Br
0.947 0.947

(b) QED optimization



Constrained Optimization
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Retrosynthesis Prediction

* Once a molecular structure i1s designed, how to synthesize 1t?

* Retrosynthesis planning/prediction

* Identify a set of reactants to synthesize a target molecule

N\ N/v
T

Product (Given)

Predict Reactants
—

Reaction Type
(optional)

Reactant A

Reactant B



A Graph to Graphs Framework for
Retrosynthesis Prediction (Shi et al. 2020)

* Each molecule 1s represented as a molecular graph

* Formulate the problem as a graph (product molecule) to a set of graphs
(reactants)

* The whole framework are divided into two stages
e Reaction center 1identification
* Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
ICML, 2020.



The G2Gs Framework (Shi et al. 2020)
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Reaction Center Prediction

An atom pair (7, j) 1s a reaction center if:

* There 1s a bond between atom i and atom j in product

* There 1s no bond between atom i and atom ; in reactants

AN . i © ~
N \ \ N
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o} o) N




Graph Translation

* Translate the incomplete synthon to the final reactant

* A variational graph to graph framework
* A latent variable z 1s introduced to capture the uncertainty during translation
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Experiments

* Experiment Setup
* Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

* Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Taple 2. Top-k exact match accuracy when reaction class is un-
Results of all baselines are directly taken from (Dai et al., 2019).  known. Results of all baselines are taken from (Dai et al., 2019).

Top-k accuracy % Top-k accuracy %

Methods Methods
1 3 5 10 1 3 5 10
Template-free Template-free
Seq2seq 37.4 52.4 57.0 61.7 Transformer 37.9 57.3 62.7 /
G2Gs 61.0 81.3 86.0 88.7 G2Gs 48.9 67.6 72.5 75.5
Template-based Template-based
Retrosim 52.9 73.8 81.2 88.1 Retrosim 37.3 54.7 63.3 74.1
Neuralsym 553 76.0 81.4 85.1 Neuralsym 44 .4 65.3 72.4 78.9

GLN 64.2 79.1 85.2 90.0 GLN 52.5 69.0 75.6 83.7




Conclusion

* Drug discovery 1s slow and expensive
* Great potential for Al 1n accelerating the process

* Great representation learning for drug discovery
* Properties prediction
* De novo molecule design and optimization
* Retrosynthesis

* Next Step: Drug Discovery with Limited Labeled Data
* Self-supervised Learning
* Multi-task/Transfer Learning, Few-shot Learning
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