
Graph Representation Learning for
Drug Discovery

Jian Tang
Mila-Quebec AI Institute

HEC Montreal
www.jian-tang.com

http://www.jian-tang.com/

The Process of Drug Discovery
• A very long and costly process
• On average takes more than 10 years and $2.5B to get a drug approved

• Big opportunities for AI to accelerate this process

Lead Discovery
2 years

Lead Optimization
3 years

Preclinical
Study

2 years

Clinical
TrialTarget

Screen millions of
functional molecules;
Found by serendipity:
Penicillin

Modify the molecule
to improve specific
properties.
e.g. toxicity, SA

In-vitro and
in-vivo
experiments;
synthesis

Multiple Phases

Molecules

Under review as a conference paper at ICLR 2020

O

NH

F

N

NH

Cl

SH
NH

O

OH

Cl

NH

N

N

N

O

N

N

O

O

NH

N

H2N

S

Cl

NH

N

N

HO N

O

HO

Cl

Cl

S

NH

Br
N

H2N

O

N

Br

Br

N

S

O

O

F

NH2

O
Cl

O

Br

O

N

N
O

F

O

N
N

O

O

HO
NH

O

Cl

H2N
NH

O

O

I

I

N

S

O

OH

I

N

NH

N

NO
NH NH

N

O

NH2

N

O

NH

O

NH
N

F

Cl

N

O
N

Cl

Br

Cl

Cl

H2N

NH

S N O

NO

NH

Br

N

O

S

NH

O

N

N
Cl

NH2

N

NNHCl

N

O

NH
N

N

O

HO

NHO

H2N

O
N O

O

Br

F

F

F

Cl

O

NH

S

O

O
N

OH NH F

S

NH

N

O

N

S
S

NH
O

NH

O

NH

NH

NH2

O

N

N
NHN

O

NH2

NH
O

N

NH

F

N

N

OH

NS

O

O

N

Cl

N

Cl

O

NH

NH

NH

O

O

NN
N

I

Cl

N

NH2

S

Figure 3: 50 molecules sampled from prior.

14

Research Problems

Lead Discovery
2 years

Lead Optimization
3 years

Preclinical
Study

2 years

Clinical
TrialTarget

Property Prediction
N

O

F

F

F

N

N

N
N

Property

Molecule Design and Optimization N

O

F

F

F

N

N

N
N

Property

Retrosynthesis Prediction
N

O

F

F

F

N

N

N
N Cl

N

O

F

F

F

N

N

O

B
N

N

O

+

Molecule Properties Prediction
• Predicting the properties of molecules or compounds is a fundamental

problem in drug discovery
• Each molecule is represented as a graph
• The fundamental problem: how to represent a whole molecule (graph)

Graph Neural Networks

• Techniques for learning node/graph representations
• Graph convolutional Networks (Kipf et al. 2016)
• Graph attention networks (Veličković et al. 2017)

• Neural Message Passing (Gilmer et al. 2017)

MESSAGE PASSING:

AGGREGATE :

COMBINE :

READOUT:

𝑚!
"#$ = AGGREGATE{𝑀" ℎ!" , ℎ%" , 𝑒!% : 𝑤 ∈ 𝑁 𝑣 }

𝑀"(ℎ!" , ℎ%" , 𝑒!%)

ℎ!"#$ = COMBINE(ℎ!" , 𝑚!
"#$)

𝑔 = READOUT{ℎ!&: 𝑣 ∈ 𝐺}

v

w

InfoGraph: Unsupervised and Semi-supervised
Whole-Graph Representation Learning
(Sun et al. ICLR’20)
• For supervised methods based on graph neural networks, a large

number of labeled data are required for training
• In the domain of drug discovery, the number of labeled data are

limited
• A large amount of unlabeled data (molecules) are available

• This work: how to effectively learn whole graph representations in
unsupervised or semi-supervised fashion

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual
Information Maximization. ICLR’20.

InfoGraph: Unsupervised Whole-Graph
Representation Learning (Sun et al. ICLR’20)
• Maximizing the mutual information between the whole graph

representation and all the sub-structure representation .
• Ensure the graph representation capture the predominant information among

all the substructures
• K-layer graph neural networks:

• Summarize the local structure information at every node i:

• Summarize the information of the whole graph:

Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer �
(the expected embedding size), our goal is to learn a �-dimensional distributed representation of every graph Gi 2 G.
We denote the number of nodes in Gi as |Gi|. We denote the matrix of representations of all graphs as � 2 R|G|⇥� .

Semi-supervied Graph Prediction Tasks. Given a set of labeled graphs GL
= {G1, · · · , G|GL|} with corresponding

output {o1, · · · , o|GL|}, and a set of unlabeled samples GU
= {G|GL|+1, · · · , G|GL|+|GU |}, our goal is to learn a model

that can make predictions for unseen graphs. Note that in most cases |GU | � |GL|.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into a fixed length graph-level representation.

Formally, the k-th layer of a GNN is

h
(k)
v = COMBINE(k)

⇣
h
(k�1)
v ,AGGREGATE(k)

⇣n⇣
h
(k�1)
v , h

(k�1)
u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

where h
(k)
v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i), euv

is the feature vector of the edge between u and v, and N (v) are neighborhoods to node v. h(0)
v is often initialized as

node features. READOUT can be a simple permutation invariant function such as averaging or a more sophisticated
graph-level pooling function [70, 71].

We seek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that we are given a set of training samples G := {Gj 2 G}Nj=1 with empirical probability
distribution P on the input space. Let � denote the set of parameters of a K-layer graph neural network. After the first k
layers of the graph neural network, the input graph will be encoded into a set of patch representations {h(k)

i }Ni=1. Next,
we summarize feature vectors at all depths of the graph neural network into a single feature vector that captures patch
information at different scales centered at every node. Inspired by [66], we use concatenation. That is,

h
i
� = CONCAT({h(k)

i }Kk=1) (2)

H�(G) = READOUT({hi
�}Ni=1) (3)

4

Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer �
(the expected embedding size), our goal is to learn a �-dimensional distributed representation of every graph Gi 2 G.
We denote the number of nodes in Gi as |Gi|. We denote the matrix of representations of all graphs as � 2 R|G|⇥� .

Semi-supervied Graph Prediction Tasks. Given a set of labeled graphs GL
= {G1, · · · , G|GL|} with corresponding

output {o1, · · · , o|GL|}, and a set of unlabeled samples GU
= {G|GL|+1, · · · , G|GL|+|GU |}, our goal is to learn a model

that can make predictions for unseen graphs. Note that in most cases |GU | � |GL|.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into a fixed length graph-level representation.

Formally, the k-th layer of a GNN is

h
(k)
v = COMBINE(k)

⇣
h
(k�1)
v ,AGGREGATE(k)

⇣n⇣
h
(k�1)
v , h

(k�1)
u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

where h
(k)
v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i), euv

is the feature vector of the edge between u and v, and N (v) are neighborhoods to node v. h(0)
v is often initialized as

node features. READOUT can be a simple permutation invariant function such as averaging or a more sophisticated
graph-level pooling function [70, 71].

We seek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that we are given a set of training samples G := {Gj 2 G}Nj=1 with empirical probability
distribution P on the input space. Let � denote the set of parameters of a K-layer graph neural network. After the first k
layers of the graph neural network, the input graph will be encoded into a set of patch representations {h(k)

i }Ni=1. Next,
we summarize feature vectors at all depths of the graph neural network into a single feature vector that captures patch
information at different scales centered at every node. Inspired by [66], we use concatenation. That is,

h
i
� = CONCAT({h(k)

i }Kk=1) (2)

H�(G) = READOUT({hi
�}Ni=1) (3)

4

Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer �
(the expected embedding size), our goal is to learn a �-dimensional distributed representation of every graph Gi 2 G.
We denote the number of nodes in Gi as |Gi|. We denote the matrix of representations of all graphs as � 2 R|G|⇥� .

Semi-supervied Graph Prediction Tasks. Given a set of labeled graphs GL
= {G1, · · · , G|GL|} with corresponding

output {o1, · · · , o|GL|}, and a set of unlabeled samples GU
= {G|GL|+1, · · · , G|GL|+|GU |}, our goal is to learn a model

that can make predictions for unseen graphs. Note that in most cases |GU | � |GL|.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into a fixed length graph-level representation.

Formally, the k-th layer of a GNN is

h
(k)
v = COMBINE(k)

⇣
h
(k�1)
v ,AGGREGATE(k)

⇣n⇣
h
(k�1)
v , h

(k�1)
u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

where h
(k)
v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i), euv

is the feature vector of the edge between u and v, and N (v) are neighborhoods to node v. h(0)
v is often initialized as

node features. READOUT can be a simple permutation invariant function such as averaging or a more sophisticated
graph-level pooling function [70, 71].

We seek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that we are given a set of training samples G := {Gj 2 G}Nj=1 with empirical probability
distribution P on the input space. Let � denote the set of parameters of a K-layer graph neural network. After the first k
layers of the graph neural network, the input graph will be encoded into a set of patch representations {h(k)

i }Ni=1. Next,
we summarize feature vectors at all depths of the graph neural network into a single feature vector that captures patch
information at different scales centered at every node. Inspired by [66], we use concatenation. That is,

h
i
� = CONCAT({h(k)

i }Kk=1) (2)

H�(G) = READOUT({hi
�}Ni=1) (3)

4

Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer �
(the expected embedding size), our goal is to learn a �-dimensional distributed representation of every graph Gi 2 G.
We denote the number of nodes in Gi as |Gi|. We denote the matrix of representations of all graphs as � 2 R|G|⇥� .

Semi-supervied Graph Prediction Tasks. Given a set of labeled graphs GL
= {G1, · · · , G|GL|} with corresponding

output {o1, · · · , o|GL|}, and a set of unlabeled samples GU
= {G|GL|+1, · · · , G|GL|+|GU |}, our goal is to learn a model

that can make predictions for unseen graphs. Note that in most cases |GU | � |GL|.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into a fixed length graph-level representation.

Formally, the k-th layer of a GNN is

h
(k)
v = COMBINE(k)

⇣
h
(k�1)
v ,AGGREGATE(k)

⇣n⇣
h
(k�1)
v , h

(k�1)
u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

where h
(k)
v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i), euv

is the feature vector of the edge between u and v, and N (v) are neighborhoods to node v. h(0)
v is often initialized as

node features. READOUT can be a simple permutation invariant function such as averaging or a more sophisticated
graph-level pooling function [70, 71].

We seek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that we are given a set of training samples G := {Gj 2 G}Nj=1 with empirical probability
distribution P on the input space. Let � denote the set of parameters of a K-layer graph neural network. After the first k
layers of the graph neural network, the input graph will be encoded into a set of patch representations {h(k)

i }Ni=1. Next,
we summarize feature vectors at all depths of the graph neural network into a single feature vector that captures patch
information at different scales centered at every node. Inspired by [66], we use concatenation. That is,

h
i
� = CONCAT({h(k)

i }Kk=1) (2)

H�(G) = READOUT({hi
�}Ni=1) (3)

4

Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer �
(the expected embedding size), our goal is to learn a �-dimensional distributed representation of every graph Gi 2 G.
We denote the number of nodes in Gi as |Gi|. We denote the matrix of representations of all graphs as � 2 R|G|⇥� .

Semi-supervied Graph Prediction Tasks. Given a set of labeled graphs GL
= {G1, · · · , G|GL|} with corresponding

output {o1, · · · , o|GL|}, and a set of unlabeled samples GU
= {G|GL|+1, · · · , G|GL|+|GU |}, our goal is to learn a model

that can make predictions for unseen graphs. Note that in most cases |GU | � |GL|.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into a fixed length graph-level representation.

Formally, the k-th layer of a GNN is

h
(k)
v = COMBINE(k)

⇣
h
(k�1)
v ,AGGREGATE(k)

⇣n⇣
h
(k�1)
v , h

(k�1)
u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

where h
(k)
v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i), euv

is the feature vector of the edge between u and v, and N (v) are neighborhoods to node v. h(0)
v is often initialized as

node features. READOUT can be a simple permutation invariant function such as averaging or a more sophisticated
graph-level pooling function [70, 71].

We seek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that we are given a set of training samples G := {Gj 2 G}Nj=1 with empirical probability
distribution P on the input space. Let � denote the set of parameters of a K-layer graph neural network. After the first k
layers of the graph neural network, the input graph will be encoded into a set of patch representations {h(k)

i }Ni=1. Next,
we summarize feature vectors at all depths of the graph neural network into a single feature vector that captures patch
information at different scales centered at every node. Inspired by [66], we use concatenation. That is,

h
i
� = CONCAT({h(k)

i }Kk=1) (2)

H�(G) = READOUT({hi
�}Ni=1) (3)

4

InfoGraph*: Semi-supervised Graph
Representation Learning (Sun et al. ICLR’20)
• Two different encoders for the supervised and unsupervised tasks
• Maximize the mutual information of the representations learned by the

two encoders at all levels (or layers)

Figure 2: Illustration of the semi-supervised version of InfoGraph (InfoGraph*). There are two separate encoders with
the same architecture, one for the supervised task and the other trained using both labeled and unlabeled data with an
unsupervised objective (eq. (4)). We encourage the mutual information of the two representations learned by the two
encoders to be high by deploying a discriminator that takes a pair of representation as input and determines whether
they are from the same input graph.

where h
i
� is the summarized patch representation centered at node i and H�(G) is the global representation after

applying READOUT. Note that here we slightly abuse the notation of h.

We define our mutual information (MI) estimator on global/local pairs, maximizing the estimated MI over the given
dataset G := {Gj 2 G}Nj=1:

�̂, ̂ = argmax
�,

X

G2G

1

|G|
X

u2G

I�, (
~h
u
�;H�(G)). (4)

I�, is the mutual information estimator modeled by discriminator T and parameterized by a neural network with
parameters . We use the Jensen-Shannon MI estimator (following the formulation of [43]),

I�, (h
i
�(G);H�(G)) :=

EP[�sp(�T�, (
~h
i
�(x), H�(x)))]� EP⇥P̃[sp(T�, (~hi

�(x
0
), G�(x)))] (5)

where x is an input sample, x0 (negative sample) is an input sampled from P̃ = P, a distribution identical to the
empirical probability distribution of the input space, and sp(z) = log(1 + e

z
) is the softplus function. In practice, we

generate negative samples using all possible combinations of global and local patch representations across all graph
instances in a batch.

Since H�(G) is encouraged to have high MI with patches that contain information at all scales, this favours encoding
aspects of the data that are shared across patches and aspects that are shared across scales. The algorithm is illustrated
in Fig. 1.

It should be noted that our model is similar to Deep Graph Infomax (DGI) [58], a model proposed for learning
unsupervised node embeddings. However, there are important design differences due to the different problems that we
are focusing on. First, in DGI they use random sampling to obtain negative samples due to the fact that they are mainly
focusing on learning node embeddings on a graph. However, contrastive methods require a large number of negative
samples to be competitive [18], thus the use of batch-wise generation of negative samples is crucial as we are trying to
learn graph embeddings given many graph instances.Second, the choice of graph convolution encoders is also crucial.
We use GIN [65] while DGI uses GCN [27] as GIN provides a better inductive bias for graph level applications. Graph
neural network designs should be considered carefully so that graph representations can be discriminative towards
other graph instances. For example, we use sum over mean for READOUT and that can provide important information
regarding the size of the graph.

5

3.3 Semi-supervised InfoGraph

Based on the previous unsupervised model, a straightforward way to do semi-supervised property prediction on graphs
is to combine the purely supervised loss and the unsupervised objective function which acts as a regularization term.
In doing so, the model is trained to predict properties for the labeled dataset while keeping a rich discriminative
intermediate representation learned from both the labeled and the unlabeled dataset. That is, we try to minimize the
following objective function:

Ltotal =

|GL|X

i=1

Lsupervised(y�(Gi), oi) + �

|GL|+|GU|X

j=1

Lunsupervised(h�(Gj); H�(Gj)) (6)

where Lsupervised(y�(Gi), oi) is defined as the loss function of graph Gi that measures the discrepancy between the
classifier output y�(Gi) and the true output oi. Lunsupervised(h�(Gj); H�(Gj) is the unsupervised InfoGraph loss term as
defined in eq. (4) that can be optimized using both labeled and unlabeled data. The hyper-parameter � controls the
relative weight between the purely supervised and the unsupervised loss. The intuition behind this is that the model
will benefit from learning a good representation from the large amount of unlabeled data while learning to predict the
corresponding supervised label.

However, supervised tasks and unsupervised tasks may favor different information or a different semantic space. Simply
combining the two loss functions using the same encoder may lead to “negative transfer” 1 [46, 52]. We propose a simple
way to alleviate this problem: we deploy two encoder models: the encoder on the labelled data (supervised encoder)
and the encoder on the unlabelled data (unsupervised encoder). For transferring the learned representations from the
unsupervised encoder to the supervised encoder, we define a loss term that encourages the representations learned by
the two encoders to have high mutual information, at all levels of representations (third term of Eq. 7). Formally, let '
denote the set of parameters of another K-layered graph neural network, identical to the one parameterized by �, and
let � be a tunable hyper-parameter, Hk

�(G), Hk
'(G) be global encoder representations of the graph G at encoder layer

k, then total loss function can be defined as follows:

Ltotal =

|GL|X

i=1

Lsupervised(y�(Gi), oi) +

|GL|+|GU |X

j=1

Lunsupervised(h'(Gj);H'(Gj))

� �

|GL|+|GU |X

j=1

1

|Gj |

KX

k=1

I(H
k
�(Gj);H

k
'(Gj).

(7)

Notice that this formulation can be seen as a special instance of the student-teacher framework. However, unlike the
recent student-teacher methods for semi-supervised learning [31, 57, 61], which enforce the predictions of the student
model to be similar to the teacher model, we enforce the transfer of knowledge from the teacher model to the student
model via mutual-information maximization at various levels of representations. In practice, to reduce the computation
overhead introduced by the third term of Eq 7, instead of enforcing the mutual-information maximization over all the
layers of the encoders, at each training update, we enforce mutual-information maximization on a randomly chosen
layer of the encoder [60].

In our semi-supervised experiments, we refer to the naive method using the objective function given in eq. (6) as
InfoGraph. We refer to the method that uses two separate encoders and employ the objective function given in eq. (7) as
InfoGraph*. InfoGraph* is fully summarized in Figure 2.

4 Experiments

We evaluate the effectiveness of the graph-level representation learned by InfoGraph on downstream graph classification
tasks and on semi-supervised molecular property prediction tasks.

4.1 Datasets

For graph classification, we conduct experiments on 6 well-known benchmark datasets: MUTAG, PTC, REDDIT-
BINARY, REDDIT-MULTI-5K, IMDB-BINARY, and IMDB-MULTI ([68]).

1We slightly abuse this term in this paper as it usually refers to transferring knowledge from a less related source and thus may
hurt the target performance.

6

Dataset MUTAG PTC-MR RDT-B RDT-M5K IMDB-B IMDB-M
(No. Graphs) 188 344 2000 4999 1000 1500
(No. classes) 2 2 2 5 2 3
(Avg. Graph Size) 17.93 14.29 429.63 508.52 19.77 13.00

Graph Kernels

RW [14] 83.72 ± 1.50 57.85 ± 1.30 OMR OMR 50.68 ± 0.26 34.65 ± 0.19

SP [3] 85.22 ± 2.43 58.24 ± 2.44 64.11 ± 0.14 39.55 ± 0.22 55.60 ± 0.22 37.99 ± 0.30

GK [55] 81.66 ± 2.11 57.26 ± 1.41 77.34 ± 0.18 41.01 ± 0.17 65.87 ± 0.98 43.89 ± 0.38

WL [54] 80.72 ± 3.00 57.97 ± 0.49 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44 46.95 ± 0.46

DGK [68] 87.44 ± 2.72 60.08 ± 2.55 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56 44.55 ± 0.52

MLG [28] 87.94 ± 1.61 63.26 ± 1.48 > 1 Day > 1 Day 66.55 ± 0.25 41.17 ± 0.03

Other Unsupervised Methods

node2vec [17] 72.63± 10.20 58.58 ± 8.00 - - - -
sub2vec [1] 61.05± 15.80 59.99 ± 6.38 71.48 ± 0.41 36.68 ± 0.42 55.26 ± 1.54 36.67 ± 0.83

graph2vec [38] 83.15 ± 9.25 60.17 ± 6.86 75.78 ± 1.03 47.86 ± 0.26 71.1 ± 0.54 50.44 ± 0.87

InfoGraph 89.01 ± 1.13 61.65 ± 1.43 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87 49.69 ± 0.53

Table 1: Classification accuracy on 6 datasets. The result in bold indicates the best reported classification accuracy. The
top half of the table compares results with various graph kernel approaches while bottom half compares results with
other state-of-the-art unsupervised graph representation learning methods. ‘> 1 day’ represents that the computation
exceeds 24 hours. ‘OMR’ is out of memory error.

Target Mu (0) Alpha (1) HOMO (2) LUMO (3) Gap (4) R2 (5) ZPVE(6) U0 (7) U (8) H (9) G(10) Cv (11)
MAE 0.3201 0.5792 0.0060 0.0062 0.0091 10.0469 0.0007 0.3204 0.2934 0.2722 0.2948 0.2368

Semi-Supervised Error Ratio
Mean-Teachers 1.09 1.00 0.99 1.00 0.97 0.52 0.77 1.16 0.93 0.79 0.86 0.86

InfoGraph 1.02 0.97 1.02 0.99 1.01 0.71 0.96 0.85 0.93 0.93 0.99 1.00
InfoGraph* 0.99 0.94 0.99 0.99 0.98 0.49 0.52 0.44 0.58 0.57 0.54 0.83

Table 2: Results of semi-supervised experiments on QM9 dataset. The result in bold indicates the best performance.
The top half of the table shows the mean absolute error (MAE) of the supervised model. The bottom half shows the
error ratio (with respect to supervised result) of the semi-supervised models using the same underlying model. Lower
scores are better and values less than 1.0 indicate better performance than the supervised baseline.

5 Results

The results of evaluating unsupervised graph level representations using downstream graph classification tasks are
presented in Table 1. We show results from six methods including three state-of-the-art graph kernel methods: WL
[54], DGK [68], and MLG [28]. While these kernel methods perform well on individual datasets, none of them are
competitive across all of the datasets. Additionally, MLG suffers from a long run time and take more than 24 hours to
run on the two larger benchmark datasets. We find that InfoGraph outperforms all of these baselines on 4 out of 6 of the
datasets. In the other 2 datasets, InfoGraph still has very competitive performance.

The results of the semi-supervised learning experiments on the molecular property prediction task are presented in Table
2. We observe that by simply combining the supervised objective with the unsupervised infomax objective (InfoGraph)
obtains better performance compared to the purely supervised models on 7 out of 12 of the targets. However, in 1
out of 12 targets it does not obtain better performance and in 4 out of 12 targets, it results in poorer performance.
This “negative transfer” effect may be caused by the fact that the supervised objective and the unsupervised objective
favor different information or different latent semantic space. This effect is alleviated with InfoGraph*, our modified
version of InfoGraph for semi-supervised learning. InfoGraph* improves over the supervised model in all the 12 targets.
InfoGraph* obtains the best result on 11 targets while the Mean Teacher method obtains the best results on 2 targets
(with one overlap). However, the Mean Teacher model yields worse performance on 2 targets when compared to the
supervised result.

6 Conclusion and Future work

In this paper, we propose InfoGraph to learn unsupervised graph-level representations and InfoGraph* for semi-
supervised learning. We conduct experiments on graph classification and molecular property prediction tasks to
evaluate these two methods. Experimental results show that InfoGraph and InfoGraph* are both very competitive

8

Results on Graph Classification and
RegressionDataset MUTAG PTC-MR RDT-B RDT-M5K IMDB-B IMDB-M

(No. Graphs) 188 344 2000 4999 1000 1500
(No. classes) 2 2 2 5 2 3
(Avg. Graph Size) 17.93 14.29 429.63 508.52 19.77 13.00

Graph Kernels

RW [14] 83.72 ± 1.50 57.85 ± 1.30 OMR OMR 50.68 ± 0.26 34.65 ± 0.19

SP [3] 85.22 ± 2.43 58.24 ± 2.44 64.11 ± 0.14 39.55 ± 0.22 55.60 ± 0.22 37.99 ± 0.30

GK [55] 81.66 ± 2.11 57.26 ± 1.41 77.34 ± 0.18 41.01 ± 0.17 65.87 ± 0.98 43.89 ± 0.38

WL [54] 80.72 ± 3.00 57.97 ± 0.49 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44 46.95 ± 0.46

DGK [68] 87.44 ± 2.72 60.08 ± 2.55 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56 44.55 ± 0.52

MLG [28] 87.94 ± 1.61 63.26 ± 1.48 > 1 Day > 1 Day 66.55 ± 0.25 41.17 ± 0.03

Other Unsupervised Methods

node2vec [17] 72.63± 10.20 58.58 ± 8.00 - - - -
sub2vec [1] 61.05± 15.80 59.99 ± 6.38 71.48 ± 0.41 36.68 ± 0.42 55.26 ± 1.54 36.67 ± 0.83

graph2vec [38] 83.15 ± 9.25 60.17 ± 6.86 75.78 ± 1.03 47.86 ± 0.26 71.1 ± 0.54 50.44 ± 0.87

InfoGraph 89.01 ± 1.13 61.65 ± 1.43 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87 49.69 ± 0.53

Table 1: Classification accuracy on 6 datasets. The result in bold indicates the best reported classification accuracy. The
top half of the table compares results with various graph kernel approaches while bottom half compares results with
other state-of-the-art unsupervised graph representation learning methods. ‘> 1 day’ represents that the computation
exceeds 24 hours. ‘OMR’ is out of memory error.

Target Mu (0) Alpha (1) HOMO (2) LUMO (3) Gap (4) R2 (5) ZPVE(6) U0 (7) U (8) H (9) G(10) Cv (11)
MAE 0.3201 0.5792 0.0060 0.0062 0.0091 10.0469 0.0007 0.3204 0.2934 0.2722 0.2948 0.2368

Semi-Supervised Error Ratio
Mean-Teachers 1.09 1.00 0.99 1.00 0.97 0.52 0.77 1.16 0.93 0.79 0.86 0.86

InfoGraph 1.02 0.97 1.02 0.99 1.01 0.71 0.96 0.85 0.93 0.93 0.99 1.00
InfoGraph* 0.99 0.94 0.99 0.99 0.98 0.49 0.52 0.44 0.58 0.57 0.54 0.83

Table 2: Results of semi-supervised experiments on QM9 dataset. The result in bold indicates the best performance.
The top half of the table shows the mean absolute error (MAE) of the supervised model. The bottom half shows the
error ratio (with respect to supervised result) of the semi-supervised models using the same underlying model. Lower
scores are better and values less than 1.0 indicate better performance than the supervised baseline.

5 Results

The results of evaluating unsupervised graph level representations using downstream graph classification tasks are
presented in Table 1. We show results from six methods including three state-of-the-art graph kernel methods: WL
[54], DGK [68], and MLG [28]. While these kernel methods perform well on individual datasets, none of them are
competitive across all of the datasets. Additionally, MLG suffers from a long run time and take more than 24 hours to
run on the two larger benchmark datasets. We find that InfoGraph outperforms all of these baselines on 4 out of 6 of the
datasets. In the other 2 datasets, InfoGraph still has very competitive performance.

The results of the semi-supervised learning experiments on the molecular property prediction task are presented in Table
2. We observe that by simply combining the supervised objective with the unsupervised infomax objective (InfoGraph)
obtains better performance compared to the purely supervised models on 7 out of 12 of the targets. However, in 1
out of 12 targets it does not obtain better performance and in 4 out of 12 targets, it results in poorer performance.
This “negative transfer” effect may be caused by the fact that the supervised objective and the unsupervised objective
favor different information or different latent semantic space. This effect is alleviated with InfoGraph*, our modified
version of InfoGraph for semi-supervised learning. InfoGraph* improves over the supervised model in all the 12 targets.
InfoGraph* obtains the best result on 11 targets while the Mean Teacher method obtains the best results on 2 targets
(with one overlap). However, the Mean Teacher model yields worse performance on 2 targets when compared to the
supervised result.

6 Conclusion and Future work

In this paper, we propose InfoGraph to learn unsupervised graph-level representations and InfoGraph* for semi-
supervised learning. We conduct experiments on graph classification and molecular property prediction tasks to
evaluate these two methods. Experimental results show that InfoGraph and InfoGraph* are both very competitive

8

Table 1: Graph classification accuracy
with unsupervised methods

Table 2: Results of semi-supervised
experiments on QM9 data set.

Research Problems

Lead Discovery
2 years

Lead Optimization
3 years

Preclinical
Study

2 years

Clinical
TrialTarget

Property Prediction
N

O

F

F

F

N

N

N
N

Property

Molecule Design and Optimization N

O

F

F

F

N

N

N
N

Property

Retrosynthesis Prediction
N

O

F

F

F

N

N

N
N Cl

N

O

F

F

F

N

N

O

B
N

N

O

+

Molecule Generation and Optimization

• Deep generative models for data generation

Text generated by by GPT-2,
Examples from Internet

Image generation
(by StyleGAN, From Internet) Graphs?

Under review as a conference paper at ICLR 2020

O

NH

F

N

NH

Cl

SH
NH

O

OH

Cl

NH

N

N

N

O

N

N

O

O

NH

N

H2N

S

Cl

NH

N

N

HO N

O

HO

Cl

Cl

S

NH

Br
N

H2N

O

N

Br

Br

N

S

O

O

F

NH2

O
Cl

O

Br

O

N

N
O

F

O

N
N

O

O

HO
NH

O

Cl

H2N
NH

O

O

I

I

N

S

O

OH

I

N

NH

N

NO
NH NH

N

O

NH2

N

O

NH

O

NH
N

F

Cl

N

O
N

Cl

Br

Cl

Cl

H2N

NH

S N O

NO

NH

Br

N

O

S

NH

O

N

N
Cl

NH2

N

NNHCl

N

O

NH
N

N

O

HO

NHO

H2N

O
N O

O

Br

F

F

F

Cl

O

NH

S

O

O
N

OH NH F

S

NH

N

O

N

S
S

NH
O

NH

O

NH

NH

NH2

O

N

N
NHN

O

NH2

NH
O

N

NH

F

N

N

OH

NS

O

O

N

Cl

N

Cl

O

NH

NH

NH

O

O

NN
N

I

Cl

N

NH2

S

Figure 3: 50 molecules sampled from prior.

14

GraphAF: an Autoregressive Flow for
Molecular Graph Generation
(Shi & Xu ICLR’20)
• Formulate graph generation as a sequential decision process
• In each step, generate a new atom
• Determine the bonds between the new atoms and existing atoms

Under review as a conference paper at ICLR 2020

C

O

C

C
C

O

C

O

!""

C

O

C

!#

C

O

C

C

O

C C

C

O

C C

C

O

C C

C

O

C CGCN + EdgeMLP + Transformation + Argmax

Edge: Single bond

GCN + NodeMLP + Transformation + Argmax

C Node: Atom

Edge: Double bond
Edge: No bond

Noise from &((, *)

!#
!"
!""
!$
!$"
!$$
!%
…

-#
-"
-""
-$
-$"
-$$
-%
…

-$

… …

!" !$!%

!$" !%"

!$$!%$

!%%

(a) Sampling Framework

C

O

C

C
C

O

C

O

!""

C

O

C

!#

C

O

C

C

O

C C

C

O

C C

C

O

C C

C

O

C CGCN + EdgeMLP + Transformation + Argmax

Edge: Single bond

GCN + NodeMLP + Transformation + Argmax

C Node: Atom

Edge: Double bond
Edge: No bond

Noise from &((, *)

!#
!"
!""
!$
!$"
!$$
!%
…

-#
-"
-""
-$
-$"
-$$
-%
…

-$

… …

!" !$!%

!$" !%"

!$$!%$

!%%

(b) Autoregressive Flow

Figure 1: Overview of the proposed GraphAF model. Superscripts of ✏Xi , ✏
A
ij , z

X
i , z

A
ij is are omitted

for simplicity. (a) Illustration of the phases of the generative procedure. Newly generated node/edge
is marked in red. We begin with a virtual graph where there is no items. Then we alternately use
NodeMLP and EdgeMLP to convert the node embeddings from R-GCN to parameters of affine trans-
formation, and map the random sampled vector to predicted atom/bond types. (b) Another diagram
of GraphAF from the perspective of autoregressive flow. Current state corresponds to highlighted
the step in figure 1(a).

X
⇡
i = argmax(zXi) = argmax(✏Xi � ↵

X
i + µ

X
i), where ✏

X
i 2 Rd and ✏

X
i ⇠ N (0, 1)

Ã
⇡
ij = argmax(zAij) = argmax(✏Aij � ↵

A
ij + µ

A
ij), where ✏

A
ij 2 Rb and ✏

A
ij ⇠ N (0, 1)

(7)

where � denotes the element-wise multiplication. ✏
X
i and ✏

A
ij are random vectors that GraphAF

uses internally to generate node and edge, which are typically i.i.d. drawn from a multi-dimensional
standard Gaussian.

Valency Check During Sampling. However, as mentioned above, in GraphAF the conditional dis-
tributions of edge types are modeled by an invertible normalizing flow, i.e., all edge types in the
chemical space are mapped into the latent space. Therefore, any graph including invalid molecule
can still be generated even the model is trained well for modeling the datasets. Thanks to the sequen-
tial generation manner of GraphAF, we can explicitly apply a valency constraint during sampling
to check whether current bonds have exceeded the allowed valency, which has also been adopted in
previous models (You et al., 2018a; Popova et al., 2019). Let |A⇡

ij | denote the order of the bond A
⇡
ij ,

then in each step when sampling the latent ✏Aij and get the edge A⇡
ij by Eq. 7, we check the following

valency constraint for the i
th and j

th atoms:

X

j

|A⇡
ij |+ k  Valency(X⇡

i) and
X

i

|A⇡
ij |+ k  Valency(X⇡

j) (8)

If the newly added bond break the valency constraint, we just reject the variable ✏
A
ij , sample another

in the latent space and invert it to band feature. Finally, the generation process will end once one of
the following conditions if satisfied: 1) the graph size reach the pre-sampled max-size n; 2) there
is no bond linked between the newly generated atom and previous sub-graph. After this, hydrogens
will be added to the atoms that have not filled up their valencies.

4.3 EFFICIENT PARALLEL TRAINING

As defined in 7, the sampling process maps the latent space (✏A, ✏X) to continuous feature (zA, zX),
and then further to molecular space (A,X) via argmax. In this process, GraphAF can be seen as
a transformation f : (✏A, ✏X) ! (zA, zX), where (✏A, ✏X) are sampled from N (0, 1). Since

5

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
”GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation.” ICLR’20.

GraphAF: an Autoregressive Flow for
Molecular Graph Generation
• Traverse a graph through BFS-order
• Transform each graph into a sequence of nodes and edges

• Defines an invertible mapping from a base distribution (Gaussian
distribution) to the observations (graph nodes and edge sequences)

Under review as a conference paper at ICLR 2020

C

O

C

C
C

O

C

O

!""

C

O

C

!#

C

O

C

C

O

C C

C

O

C C

C

O

C C

C

O

C CGCN + EdgeMLP + Transformation + Argmax

Edge: Single bond

GCN + NodeMLP + Transformation + Argmax

C Node: Atom

Edge: Double bond
Edge: No bond

Noise from &((, *)

!#
!"
!""
!$
!$"
!$$
!%
…

-#
-"
-""
-$
-$"
-$$
-%
…

-$

… …

!" !$!%

!$" !%"

!$$!%$

!%%

(a) Sampling Framework

C

O

C

C
C

O

C

O

!""

C

O

C

!#

C

O

C

C

O

C C

C

O

C C

C

O

C C

C

O

C CGCN + EdgeMLP + Transformation + Argmax

Edge: Single bond

GCN + NodeMLP + Transformation + Argmax

C Node: Atom

Edge: Double bond
Edge: No bond

Noise from &((, *)

!#
!"
!""
!$
!$"
!$$
!%
…

-#
-"
-""
-$
-$"
-$$
-%
…

-$

… …

!" !$!%

!$" !%"

!$$!%$

!%%

(b) Autoregressive Flow

Figure 1: Overview of the proposed GraphAF model. Superscripts of ✏Xi , ✏
A
ij , z

X
i , z

A
ij is are omitted

for simplicity. (a) Illustration of the phases of the generative procedure. Newly generated node/edge
is marked in red. We begin with a virtual graph where there is no items. Then we alternately use
NodeMLP and EdgeMLP to convert the node embeddings from R-GCN to parameters of affine trans-
formation, and map the random sampled vector to predicted atom/bond types. (b) Another diagram
of GraphAF from the perspective of autoregressive flow. Current state corresponds to highlighted
the step in figure 1(a).

X
⇡
i = argmax(zXi) = argmax(✏Xi � ↵

X
i + µ

X
i), where ✏

X
i 2 Rd and ✏

X
i ⇠ N (0, 1)

Ã
⇡
ij = argmax(zAij) = argmax(✏Aij � ↵

A
ij + µ

A
ij), where ✏

A
ij 2 Rb and ✏

A
ij ⇠ N (0, 1)

(7)

where � denotes the element-wise multiplication. ✏
X
i and ✏

A
ij are random vectors that GraphAF

uses internally to generate node and edge, which are typically i.i.d. drawn from a multi-dimensional
standard Gaussian.

Valency Check During Sampling. However, as mentioned above, in GraphAF the conditional dis-
tributions of edge types are modeled by an invertible normalizing flow, i.e., all edge types in the
chemical space are mapped into the latent space. Therefore, any graph including invalid molecule
can still be generated even the model is trained well for modeling the datasets. Thanks to the sequen-
tial generation manner of GraphAF, we can explicitly apply a valency constraint during sampling
to check whether current bonds have exceeded the allowed valency, which has also been adopted in
previous models (You et al., 2018a; Popova et al., 2019). Let |A⇡

ij | denote the order of the bond A
⇡
ij ,

then in each step when sampling the latent ✏Aij and get the edge A⇡
ij by Eq. 7, we check the following

valency constraint for the i
th and j

th atoms:

X

j

|A⇡
ij |+ k  Valency(X⇡

i) and
X

i

|A⇡
ij |+ k  Valency(X⇡

j) (8)

If the newly added bond break the valency constraint, we just reject the variable ✏
A
ij , sample another

in the latent space and invert it to band feature. Finally, the generation process will end once one of
the following conditions if satisfied: 1) the graph size reach the pre-sampled max-size n; 2) there
is no bond linked between the newly generated atom and previous sub-graph. After this, hydrogens
will be added to the atoms that have not filled up their valencies.

4.3 EFFICIENT PARALLEL TRAINING

As defined in 7, the sampling process maps the latent space (✏A, ✏X) to continuous feature (zA, zX),
and then further to molecular space (A,X) via argmax. In this process, GraphAF can be seen as
a transformation f : (✏A, ✏X) ! (zA, zX), where (✏A, ✏X) are sampled from N (0, 1). Since

5

Under review as a conference paper at ICLR 2020

C

O

C

C
C

O

C

O

!""

C

O

C

!#

C

O

C

C

O

C C

C

O

C C

C

O

C C

C

O

C CGCN + EdgeMLP + Transformation + Argmax

Edge: Single bond

GCN + NodeMLP + Transformation + Argmax

C Node: Atom

Edge: Double bond
Edge: No bond

Noise from &((, *)

!#
!"
!""
!$
!$"
!$$
!%
…

-#
-"
-""
-$
-$"
-$$
-%
…

-$

… …

!" !$!%

!$" !%"

!$$!%$

!%%

(a) Sampling Framework

C

O

C

C
C

O

C

O

!""

C

O

C

!#

C

O

C

C

O

C C

C

O

C C

C

O

C C

C

O

C CGCN + EdgeMLP + Transformation + Argmax

Edge: Single bond

GCN + NodeMLP + Transformation + Argmax

C Node: Atom

Edge: Double bond
Edge: No bond

Noise from &((, *)

!#
!"
!""
!$
!$"
!$$
!%
…

-#
-"
-""
-$
-$"
-$$
-%
…

-$

… …

!" !$!%

!$" !%"

!$$!%$

!%%

(b) Autoregressive Flow

Figure 1: Overview of the proposed GraphAF model. Superscripts of ✏Xi , ✏
A
ij , z

X
i , z

A
ij is are omitted

for simplicity. (a) Illustration of the phases of the generative procedure. Newly generated node/edge
is marked in red. We begin with a virtual graph where there is no items. Then we alternately use
NodeMLP and EdgeMLP to convert the node embeddings from R-GCN to parameters of affine trans-
formation, and map the random sampled vector to predicted atom/bond types. (b) Another diagram
of GraphAF from the perspective of autoregressive flow. Current state corresponds to highlighted
the step in figure 1(a).

X
⇡
i = argmax(zXi) = argmax(✏Xi � ↵

X
i + µ

X
i), where ✏

X
i 2 Rd and ✏

X
i ⇠ N (0, 1)

Ã
⇡
ij = argmax(zAij) = argmax(✏Aij � ↵

A
ij + µ

A
ij), where ✏

A
ij 2 Rb and ✏

A
ij ⇠ N (0, 1)

(7)

where � denotes the element-wise multiplication. ✏
X
i and ✏

A
ij are random vectors that GraphAF

uses internally to generate node and edge, which are typically i.i.d. drawn from a multi-dimensional
standard Gaussian.

Valency Check During Sampling. However, as mentioned above, in GraphAF the conditional dis-
tributions of edge types are modeled by an invertible normalizing flow, i.e., all edge types in the
chemical space are mapped into the latent space. Therefore, any graph including invalid molecule
can still be generated even the model is trained well for modeling the datasets. Thanks to the sequen-
tial generation manner of GraphAF, we can explicitly apply a valency constraint during sampling
to check whether current bonds have exceeded the allowed valency, which has also been adopted in
previous models (You et al., 2018a; Popova et al., 2019). Let |A⇡

ij | denote the order of the bond A
⇡
ij ,

then in each step when sampling the latent ✏Aij and get the edge A⇡
ij by Eq. 7, we check the following

valency constraint for the i
th and j

th atoms:

X

j

|A⇡
ij |+ k  Valency(X⇡

i) and
X

i

|A⇡
ij |+ k  Valency(X⇡

j) (8)

If the newly added bond break the valency constraint, we just reject the variable ✏
A
ij , sample another

in the latent space and invert it to band feature. Finally, the generation process will end once one of
the following conditions if satisfied: 1) the graph size reach the pre-sampled max-size n; 2) there
is no bond linked between the newly generated atom and previous sub-graph. After this, hydrogens
will be added to the atoms that have not filled up their valencies.

4.3 EFFICIENT PARALLEL TRAINING

As defined in 7, the sampling process maps the latent space (✏A, ✏X) to continuous feature (zA, zX),
and then further to molecular space (A,X) via argmax. In this process, GraphAF can be seen as
a transformation f : (✏A, ✏X) ! (zA, zX), where (✏A, ✏X) are sampled from N (0, 1). Since

5

Molecule Generation

• Training Data: ZINC250K
• 250K drug-like molecules with a maximum atom number of 38
• 9 atom types and 3 edge types

Under review as a conference paper at ICLR 2020

Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
† is obtained by running GCPN’s open-source code. Results with ‡ are taken from Popova et al. (2019).

Method Validity Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%‡ 100%‡ 76.7%
GCPN 100% 20%† 99.97%‡ 100%‡ —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%
GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC (Dataset) 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN (You et al., 2018a) 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MRNN1 (Popova et al., 2019) 8.63 6.08 4.73 100.0% 0.844 0.796 0.736 100.0%

GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al., 2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Ba, 2014) to optimize our model. Full training details can be found in Appendix C.

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table 2 shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table 2, JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al., 2018a) to make results comparable. To perform this task,

1The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al., 2019) using GCPN’s script.

7

Under review as a conference paper at ICLR 2020

O

NH

F

N

NH

Cl

SH
NH

O

OH

Cl

NH

N

N

N

O

N

N

O

O

NH

N

H2N

S

Cl

NH

N

N

HO N

O

HO

Cl

Cl

S

NH

Br
N

H2N

O

N

Br

Br

N

S

O

O

F

NH2

O
Cl

O

Br

O

N

N
O

F

O

N
N

O

O

HO
NH

O

Cl

H2N
NH

O

O

I

I

N

S

O

OH

I

N

NH

N

NO
NH NH

N

O

NH2

N

O

NH

O

NH
N

F

Cl

N

O
N

Cl

Br

Cl

Cl

H2N

NH

S N O

NO

NH

Br

N

O

S

NH

O

N

N
Cl

NH2

N

NNHCl

N

O

NH
N

N

O

HO

NHO

H2N

O
N O

O

Br

F

F

F

Cl

O

NH

S

O

O
N

OH NH F

S

NH

N

O

N

S
S

NH
O

NH

O

NH

NH

NH2

O

N

N
NHN

O

NH2

NH
O

N

NH

F

N

N

OH

NS

O

O

N

Cl

N

Cl

O

NH

NH

NH

O

O

NN
N

I

Cl

N

NH2

S

Figure 3: 50 molecules sampled from prior.

14

Goal-Directed Molecule Generation with
Reinforcement Learning
• Fine tune the generation policy with reinforcement learning to

optimize the properties of generated molecules
• State: current subgraph 𝐺!
• Action: generating a new atom (i.e. p(𝑋!|𝐺!)) or a new edge

(p(𝐴!"|𝐺! , 𝑋! , 𝐴!,$:"&$)).
• Reward Design: the properties of molecules (final reward) and

chemical validity (intermediate and final reward)

Molecule Optimization

• Properties
• Penalized logP
• QED (druglikeness)

Under review as a conference paper at ICLR 2020

ure 2(a) and 2(b) show some best molecules found by the model and we present more samples with
peanalized logP ranging from 5 to 10 in appendix 3

N

12.23 11.29

11.05 10.83

(a) Penalized logP optimization

O
N

N

NH

Br

Cl

N

N

Cl

N

OH

O

S
O N

O

NH

O

NH
N

O

Br

F

0.948 0.948

0.947 0.947

(b) QED optimization

O

NH

S

NH NH

S

NH

O

O
O

O
O

O
O

O

O

O

-30.21 -22.87

-14.32 3.58

(c) Constrained optimization

Figure 2: Molecule samples generated in property optimization and constrained optimization tasks.
(a) Molecule with high penalized logP scores. (b) Molecule with high QED scores. (c) Two pairs of
molecules in constrained optimization with similarity 0.88(top) and 0.65(bottom)

Constrained Optimization. The goal of this task is to modify the given molecule to improve
specified property under similarity constraint. Following (Jin et al., 2018; You et al., 2018a), we
choose to optimize penalized logP for 800 molecules in ZINC250k with lowest scores and we adopt
the same similarity constraint as they do in this task.

For this task, we first sort all the molecules in ZINC250k in descending order according to penal-
ized logP score and calculate two average latent zpos, zneg using first, second half of the molecules
respectively. Then we treat the difference (zpos � zneg) as the direction for latent manipulation.
More specifically, given a molecule to optimize, we first encode the molecule into latent vector,
shift the latent vector towards the pre-calculated direction and finally inverse the latent back to the
molecule. Thanks to the invertibility and latent-smoothness of flow-based models, hopefully we can
get optimized molecules while satisfying similarity constraint. Empirically, we find that only mod-
ifying the last few dimensions of the latent vector under a specific BFS order will yield molecules
with high simlarity and improvement. Compared to other constrained optimization algorithm, this
method doesn’t require training a new policy network or learning a score estimator and thus is easy
to use and implement. Note that this method has been previously used in modifying attributes of
images (Kingma & Dhariwal, 2018) and has achieved great success. We optimize each molecule
for 200 times and report the success rate as well as the mean and standard deviation of improve-
ment and similarity between original and improved molecules among successful cases in table 4.
Our method significantly outperforms the GCPN with 295% higher penalized logP improvement on
average and achieves reasonable success rate by simply manipulating the latent vector without learn-
ing. Figure 2(c) visualizes two optimization results, indicating that our method is able to improve
the penalized logP score significantly while maintaining high similarity between molecule pairs.

6 CONCLUSION

9

Under review as a conference paper at ICLR 2020

Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
† is obtained by running GCPN’s open-source code. Results with ‡ are taken from Popova et al. (2019).

Method Validity Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%‡ 100%‡ 76.7%
GCPN 100% 20%† 99.97%‡ 100%‡ —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%
GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC (Dataset) 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN (You et al., 2018a) 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MRNN1 (Popova et al., 2019) 8.63 6.08 4.73 100.0% 0.844 0.796 0.736 100.0%

GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al., 2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Ba, 2014) to optimize our model. Full training details can be found in Appendix C.

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table 2 shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table 2, JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al., 2018a) to make results comparable. To perform this task,

1The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al., 2019) using GCPN’s script.

7

Constrained Optimization

Under review as a conference paper at ICLR 2020

ure 2(a) and 2(b) show some best molecules found by the model and we present more samples with
peanalized logP ranging from 5 to 10 in appendix 3

N

12.23 11.29

11.05 10.83

(a) Penalized logP optimization

O
N

N

NH

Br

Cl

N

N

Cl

N

OH

O

S
O N

O

NH

O

NH
N

O

Br

F

0.948 0.948

0.947 0.947

(b) QED optimization

O

NH

S

NH NH

S

NH

O

O
O

O
O

O
O

O

O

O

-30.21 -22.87

-14.32 3.58

(c) Constrained optimization

Figure 2: Molecule samples generated in property optimization and constrained optimization tasks.
(a) Molecule with high penalized logP scores. (b) Molecule with high QED scores. (c) Two pairs of
molecules in constrained optimization with similarity 0.88(top) and 0.65(bottom)

Constrained Optimization. The goal of this task is to modify the given molecule to improve
specified property under similarity constraint. Following (Jin et al., 2018; You et al., 2018a), we
choose to optimize penalized logP for 800 molecules in ZINC250k with lowest scores and we adopt
the same similarity constraint as they do in this task.

For this task, we first sort all the molecules in ZINC250k in descending order according to penal-
ized logP score and calculate two average latent zpos, zneg using first, second half of the molecules
respectively. Then we treat the difference (zpos � zneg) as the direction for latent manipulation.
More specifically, given a molecule to optimize, we first encode the molecule into latent vector,
shift the latent vector towards the pre-calculated direction and finally inverse the latent back to the
molecule. Thanks to the invertibility and latent-smoothness of flow-based models, hopefully we can
get optimized molecules while satisfying similarity constraint. Empirically, we find that only mod-
ifying the last few dimensions of the latent vector under a specific BFS order will yield molecules
with high simlarity and improvement. Compared to other constrained optimization algorithm, this
method doesn’t require training a new policy network or learning a score estimator and thus is easy
to use and implement. Note that this method has been previously used in modifying attributes of
images (Kingma & Dhariwal, 2018) and has achieved great success. We optimize each molecule
for 200 times and report the success rate as well as the mean and standard deviation of improve-
ment and similarity between original and improved molecules among successful cases in table 4.
Our method significantly outperforms the GCPN with 295% higher penalized logP improvement on
average and achieves reasonable success rate by simply manipulating the latent vector without learn-
ing. Figure 2(c) visualizes two optimization results, indicating that our method is able to improve
the penalized logP score significantly while maintaining high similarity between molecule pairs.

6 CONCLUSION

9

Research Problems

Lead Discovery
2 years

Lead Optimization
3 years

Preclinical
Study

2 years

Clinical
TrialTarget

Property Prediction
N

O

F

F

F

N

N

N
N

Property

Molecule Design and Optimization N

O

F

F

F

N

N

N
N

Property

Retrosynthesis Prediction
N

O

F

F

F

N

N

N
N Cl

N

O

F

F

F

N

N

O

B
N

N

O

+

Retrosynthesis Prediction

• Once a molecular structure is designed, how to synthesize it?
• Retrosynthesis planning/prediction
• Identify a set of reactants to synthesize a target molecule

N

O

F

F

F

N

N

N
N

Predict Reactants

Reaction Type
(optional)

Product (Given)

Cl

N

O

F

F

F

N

N

O

B
N

N

O

Reactant A

Reactant B

…

…

A Graph to Graphs Framework for
Retrosynthesis Prediction (Shi et al. 2020)
• Each molecule is represented as a molecular graph
• Formulate the problem as a graph (product molecule) to a set of graphs

(reactants)
• The whole framework are divided into two stages
• Reaction center identification
• Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
ICML, 2020.

The G2Gs Framework (Shi et al. 2020)

N

O

F

F

F

N

N

N
N

Cl

N

O

F

F

F

N

N

C.
N

O

F

F

F

N

N

C.
N

O

F

F

F

N

N

Reaction
Center

Identification

Break to
Synthons

CI

C
O

B

Variational
Graph

Translation

+

+

C.
N

N

N

O

F

F

F

N

N

N
N

O

B
N

N

O

C.
N

N

Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction

Reaction Center Prediction

N

O

F

F

F

N

N

N
N

+
Cl

N

O

F

F

F

N

N

O

B
N

N

O

An atom pair (i, j) is a reaction center if:

• There is a bond between atom i and atom j in product

• There is no bond between atom i and atom j in reactants

Graph Translation

• Translate the incomplete synthon to the final reactant
• A variational graph to graph framework
• A latent variable z is introduced to capture the uncertainty during translation

Experiments
• Experiment Setup

• Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

• Evaluation metrics: top-𝑘 exact match (based on canonical SMILES) accuracy

Conclusion

• Drug discovery is slow and expensive
• Great potential for AI in accelerating the process

• Great representation learning for drug discovery
• Properties prediction
• De novo molecule design and optimization
• Retrosynthesis

• Next Step: Drug Discovery with Limited Labeled Data
• Self-supervised Learning
• Multi-task/Transfer Learning, Few-shot Learning

Thanks!
• Current Students

• Meng Qu
• Zhaocheng Zhu
• Andreea Deac
• Louis-Pascal Xhonneux
• Shengchao Liu
• Chence Shi
• Minkai Xu

• Collaborators and previous students:,
Yoshua Bengio, Pietro Liò, Fanyun Sun,
Hongyu Guo, Jordan Hoffmann, Vikas
Verma,….

