Graph Representation Learning for Drug Discovery

Jian Tang

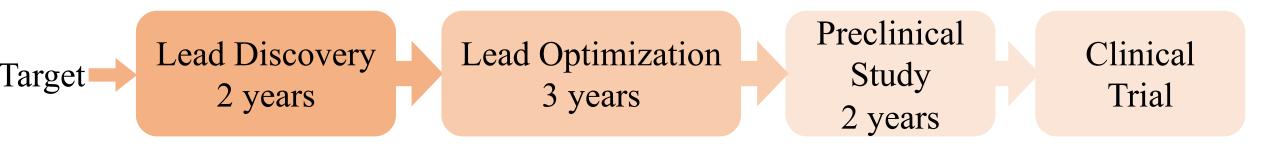
Mila-Quebec AI Institute

HEC Montreal

www.jian-tang.com

The Process of Drug Discovery

- A very long and costly process
 - On average takes more than 10 years and \$2.5B to get a drug approved
- Big opportunities for AI to accelerate this process

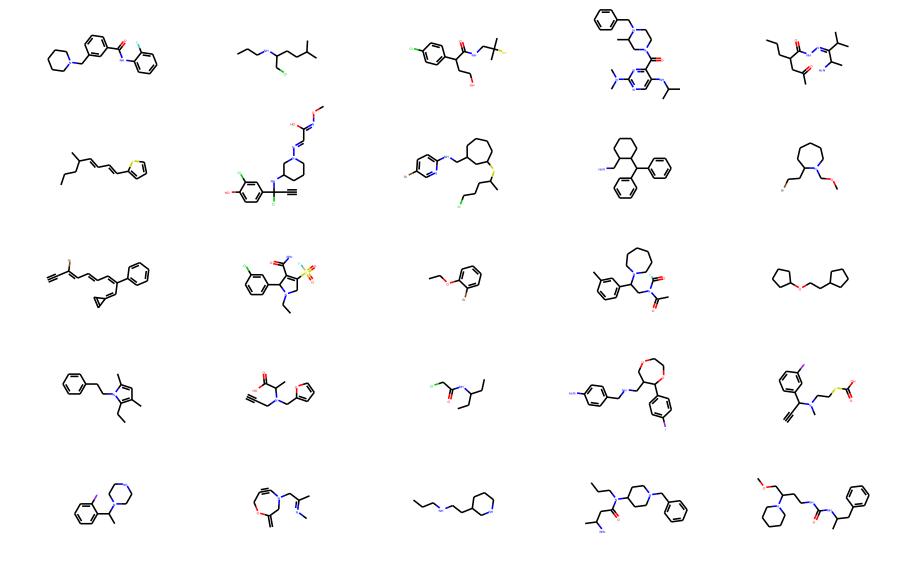


Screen millions of functional molecules; Found by serendipity: Penicillin

Modify the molecule to improve specific properties. e.g. toxicity, SA In-vitro and in-vivo experiments; synthesis

Multiple Phases

Molecules



Research Problems

Lead Optimization 3 years

Preclinical
Study
2 years

Clinical Trial

Property Prediction

Property

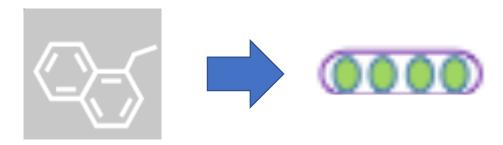
Molecule Design and Optimization

Property

Retrosynthesis Prediction

Molecule Properties Prediction

- Predicting the properties of molecules or compounds is a fundamental problem in drug discovery
- Each molecule is represented as a graph
- The fundamental problem: how to represent a whole molecule (graph)



Graph Neural Networks

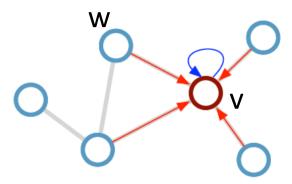
- Techniques for learning node/graph representations
 - Graph convolutional Networks (Kipf et al. 2016)
 - Graph attention networks (Veličković et al. 2017)
- Neural Message Passing (Gilmer et al. 2017)

MESSAGE PASSING: $M_k(h_v^k, h_w^k, e_{vw})$

AGGREGATE: $m_v^{k+1} = \text{AGGREGATE}\{M_k(h_v^k, h_w^k, e_{vw}): w \in N(v)\}$

COMBINE: $h_v^{k+1} = \text{COMBINE}(h_v^k, m_v^{k+1})$

READOUT: $g = \text{READOUT}\{h_v^K : v \in G\}$



InfoGraph: Unsupervised and Semi-supervised Whole-Graph Representation Learning (Sun et al. ICLR'20)

- For supervised methods based on graph neural networks, a large number of labeled data are required for training
- In the domain of drug discovery, the number of labeled data are limited
 - A large amount of unlabeled data (molecules) are available
- This work: how to effectively learn whole graph representations in unsupervised or semi-supervised fashion

InfoGraph: Unsupervised Whole-Graph Representation Learning (Sun et al. ICLR'20)

- Maximizing the *mutual information* between the whole graph representation $H_{\phi}(G)$ and all the sub-structure representation h_{ϕ}^{i} .
 - Ensure the graph representation capture the predominant information among all the substructures
- K-layer graph neural networks:

$$h_v^{(k)} = \text{COMBINE}^{(k)} \left(h_v^{(k-1)}, \text{AGGREGATE}^{(k)} \left(\left\{ \left(h_v^{(k-1)}, h_u^{(k-1)}, e_{uv} \right) : u \in \mathcal{N}(v) \right\} \right) \right)$$

• Summarize the local structure information at every node *i*:

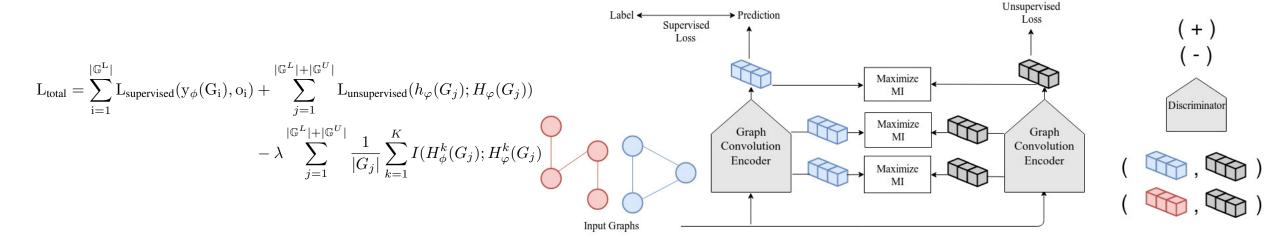
$$h_{\phi}^{i} = \text{CONCAT}(\{h_{i}^{(k)}\}_{k=1}^{K})$$

• Summarize the information of the whole graph:

$$H_{\phi}(G) = \text{READOUT}(\{h_{\phi}^i\}_{i=1}^N)$$

InfoGraph*: Semi-supervised Graph Representation Learning (Sun et al. ICLR'20)

- Two different encoders for the supervised and unsupervised tasks
- Maximize the *mutual information* of the representations learned by the two encoders at all levels (or layers)



Results on Graph Classification and Regression

Dataset	MUTAG	PTC-MR	RDT-B	RDT-M5K	IMDB-B	IMDB-M
(No. Graphs)	188	344	2000	4999	1000	1500
(No. classes)	2	2	2	5	2	3
(Avg. Graph Size)	17.93	14.29	429.63	508.52	19.77	13.00

Graph Kernels

RW [14]	83.72 ± 1.50	57.85 ± 1.30	OMR	OMR	50.68 ± 0.26	34.65 ± 0.19
SP [3]	85.22 ± 2.43	58.24 ± 2.44	64.11 ± 0.14	39.55 ± 0.22	55.60 ± 0.22	37.99 ± 0.30
GK [55]	81.66 ± 2.11	57.26 ± 1.41	77.34 ± 0.18	41.01 ± 0.17	65.87 ± 0.98	43.89 ± 0.38
WL [54]	80.72 ± 3.00	57.97 ± 0.49	68.82 ± 0.41	46.06 ± 0.21	72.30 ± 3.44	46.95 ± 0.46
DGK [68]	87.44 ± 2.72	60.08 ± 2.55	78.04 ± 0.39	41.27 ± 0.18	66.96 ± 0.56	44.55 ± 0.52
MLG [28]	87.94 ± 1.61	63.26 ± 1.48	> 1 Day	> 1 Day	66.55 ± 0.25	41.17 ± 0.03

Table 1: Graph classification accuracy with unsupervised methods

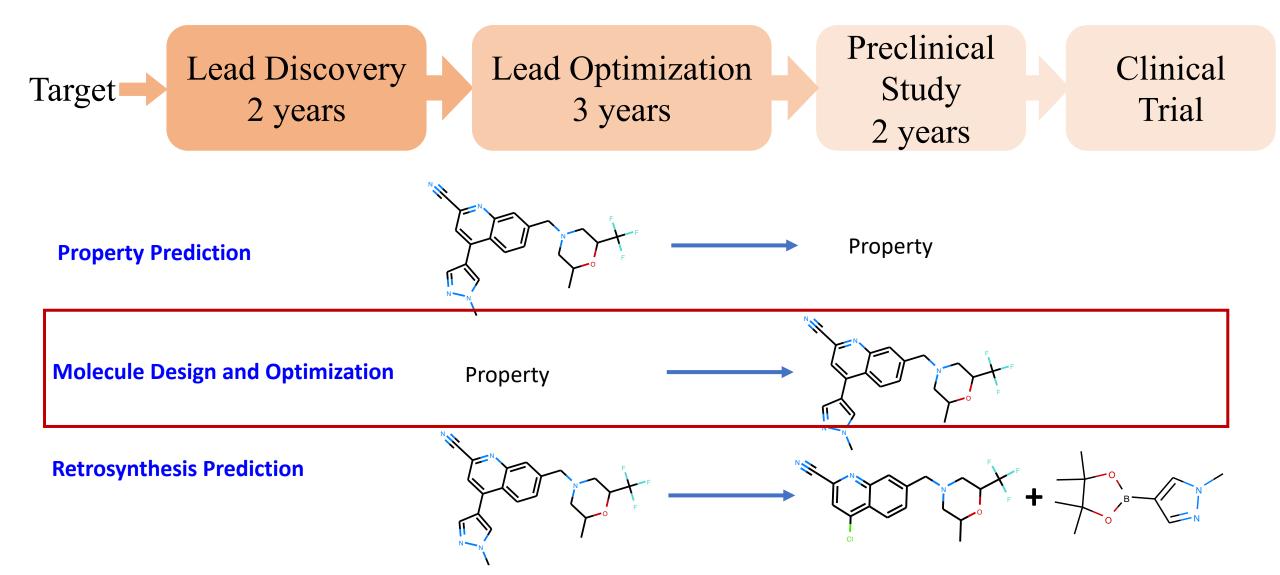
Other Unsupervised Methods

node2vec [17]	72.63 ± 10.20	58.58 ± 8.00	-	-	-	-
sub2vec [1]	61.05 ± 15.80	59.99 ± 6.38	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54	36.67 ± 0.83
graph2vec [38]	83.15 ± 9.25	60.17 ± 6.86	75.78 ± 1.03	47.86 ± 0.26	71.1 ± 0.54	50.44 ± 0.87
InfoGraph	89.01 ± 1.13	61.65 ± 1.43	82.50 ± 1.42	53.46 ± 1.03	$\textbf{73.03} \pm \textbf{0.87}$	49.69 ± 0.53

	Target	Mu (0)	Alpha (1)	HOMO (2)	LUMO (3)	Gap (4)	R2 (5)	ZPVE(6)	U0 (7)	U (8)	H (9)	G(10)	Cv (11)
ı	MAE	0.3201	0.5792	0.0060	0.0062	0.0091	10.0469	0.0007	0.3204	0.2934	0.2722	0.2948	0.2368
L													
	Semi-Supervised						Error Ratio	0					
	Mean-Teachers	1.09	1.00	0.99	1.00	0.97	0.52	0.77	1.16	0.93	0.79	0.86	0.86
	InfoGraph	1.02	0.97	1.02	0.99	1.01	0.71	0.96	0.85	0.93	0.93	0.99	1.00
	InfoGraph*	0.99	0.94	0.99	0.99	0.98	0.49	0.52	0.44	0.58	0.57	0.54	0.83

Table 2: Results of semi-supervised experiments on QM9 data set.

Research Problems

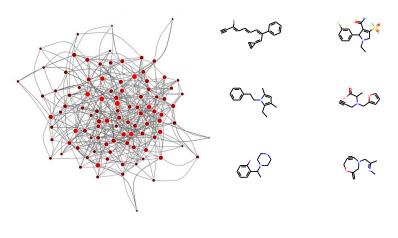


Molecule Generation and Optimization

• Deep generative models for data generation

Image generation (by StyleGAN, From Internet)

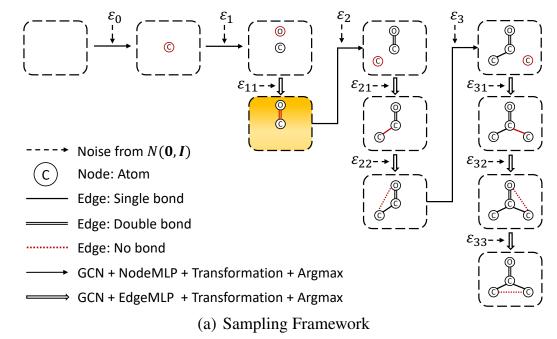
Text generated by by GPT-2, Examples from Internet



Graphs?

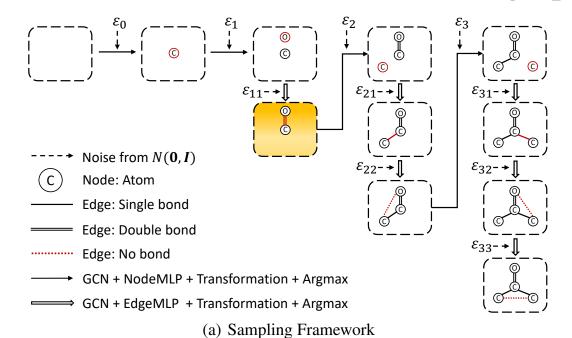
GraphAF: an Autoregressive Flow for Molecular Graph Generation (Shi & Xu ICLR'20)

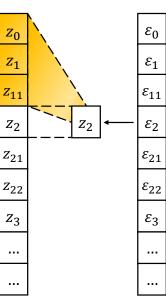
- Formulate graph generation as a sequential decision process
 - In each step, generate a new atom
 - Determine the bonds between the new atoms and existing atoms



GraphAF: an Autoregressive Flow for Molecular Graph Generation

- Traverse a graph through BFS-order
 - Transform each graph into a sequence of nodes and edges
- Defines an invertible mapping from a base distribution (Gaussian distribution) to the observations (graph nodes and edge sequences)



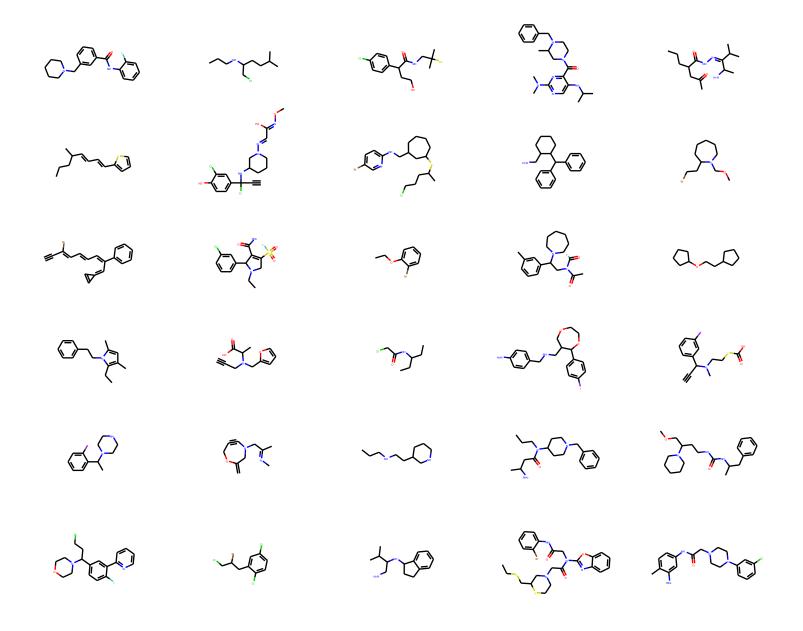


(b) Autoregressive Flow

Molecule Generation

- Training Data: ZINC250K
 - 250K drug-like molecules with a maximum atom number of 38
 - 9 atom types and 3 edge types

Method	Validity	Validity w/o check	Uniqueness	Novelty	Reconstruction	
JT-VAE	100%	_ ,	100%‡	100%‡	76.7%	
GCPN	100%	20%†	99.97% [‡]	$-100\%^{\ddagger}$	<u></u>	
MRNN	100% _	65%	99.89%	100%		i
GraphNVP	42.60%	_	94.80%	100%	100%	
GraphAF	100%	68%	99.10%	100%	100%	



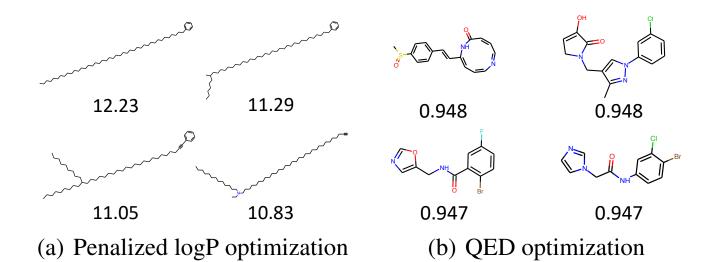
Goal-Directed Molecule Generation with Reinforcement Learning

- Fine tune the generation policy with reinforcement learning to optimize the properties of generated molecules
- State: current subgraph G_i
- Action: generating a new atom (i.e. $p(X_i|G_i)$) or a new edge $(p(A_{ij}|G_i,X_i,A_{i,1:j-1}))$.
- Reward Design: the properties of molecules (final reward) and chemical validity (intermediate and final reward)

Molecule Optimization

- Properties
 - Penalized logP
 - QED (druglikeness)

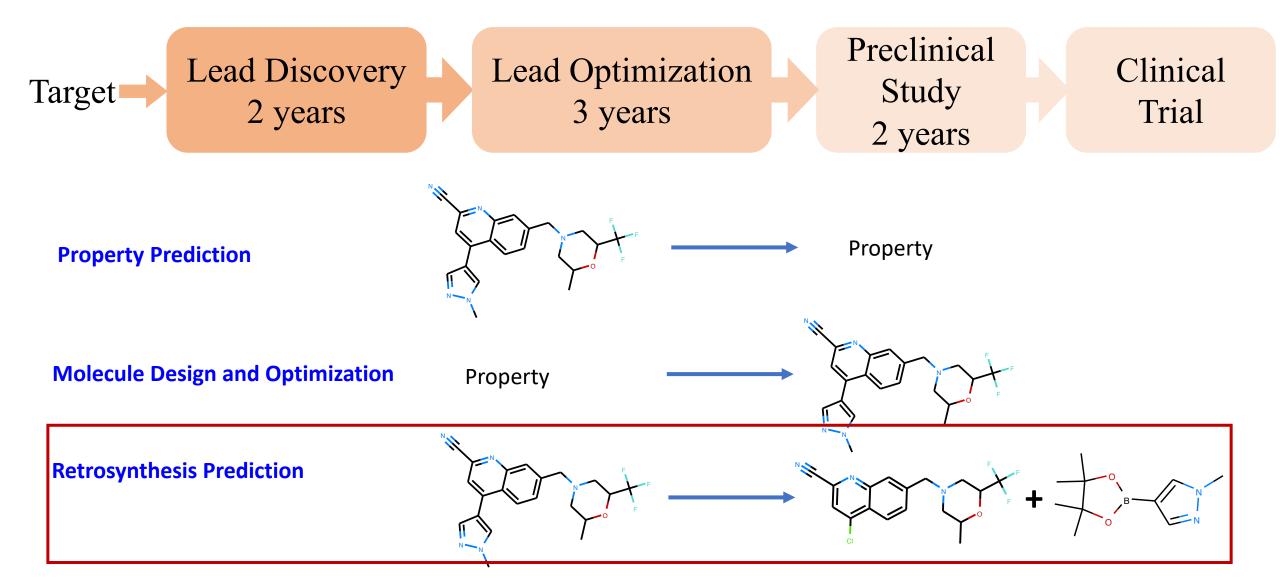
Method	Penalized logP				QED				
Method	1st	2nd	3rd	Validity	1st	2nd	3rd	Validity	
ZINC (Dataset)	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%	
JT-VAE (Jin et al., 2018)	5.30	4.93	4.49	100.0%	0.925	0.911	0.910	100.0%	
GCPN (You et al., 2018a)	7.98	7.85	7.80	100.0%	0.948	0.947	0.946	100.0%	
MRNN ¹ (Popova et al., 2019)	8.63	6.08	4.73	100.0%	0.844	0.796	0.736	100.0%	
GraphAF	12.23	11.29	11.05	100.0%	0.948	0.948	0.947	100.0%	



Constrained Optimization

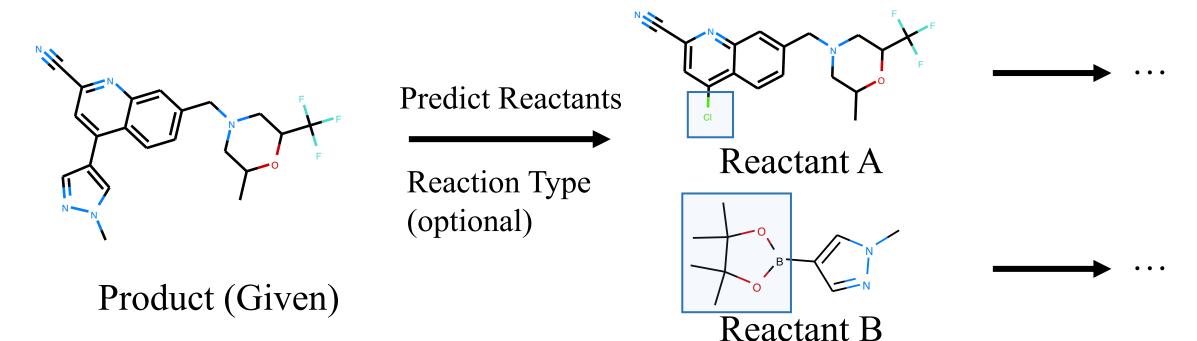
(c) Constrained optimization

Research Problems



Retrosynthesis Prediction

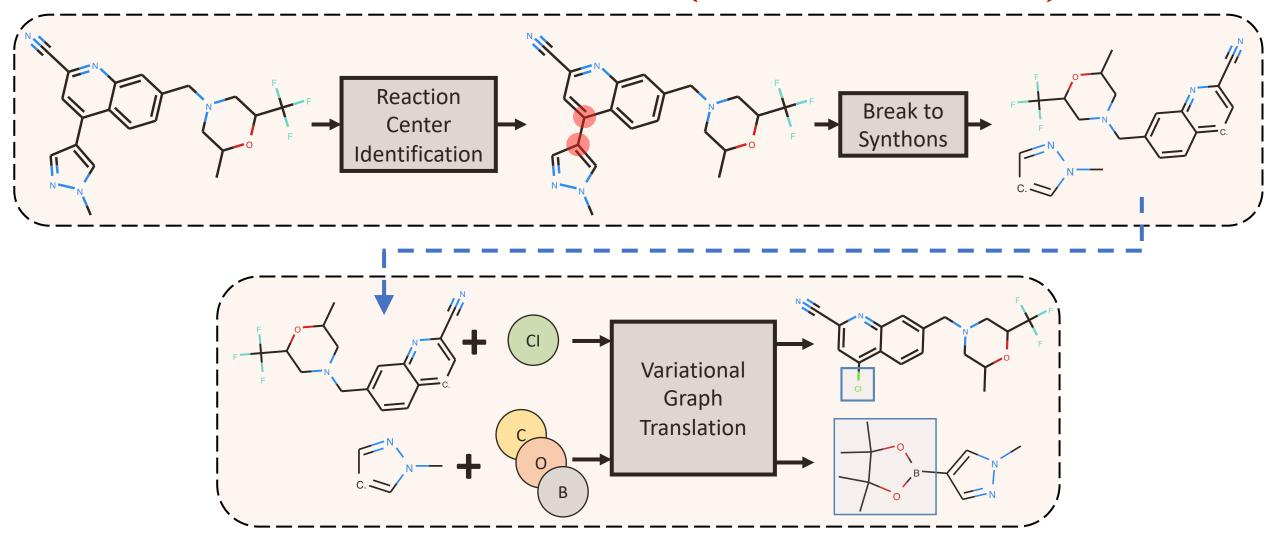
- Once a molecular structure is designed, how to synthesize it?
- Retrosynthesis planning/prediction
 - Identify a set of reactants to synthesize a target molecule



A Graph to Graphs Framework for Retrosynthesis Prediction (Shi et al. 2020)

- Each molecule is represented as a molecular graph
- Formulate the problem as a graph (product molecule) to a set of graphs (reactants)
- The whole framework are divided into two stages
 - Reaction center identification
 - Graph Translation

The G2Gs Framework (Shi et al. 2020)



Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction

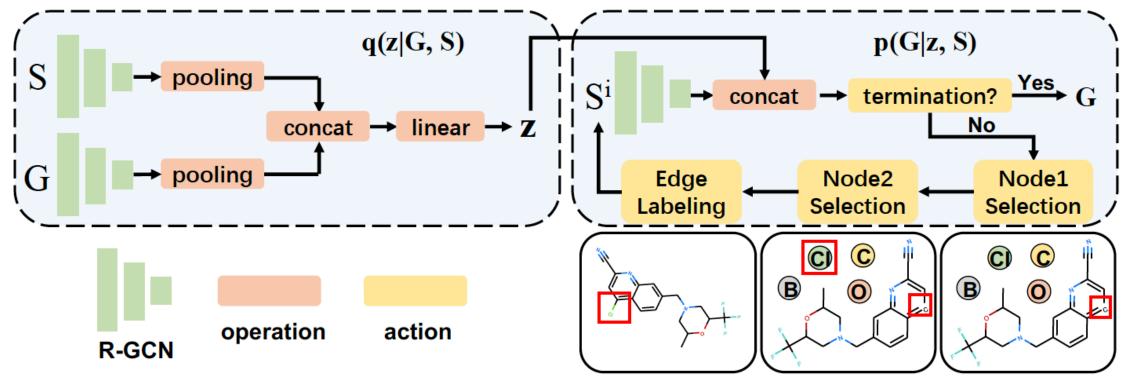
Reaction Center Prediction

An atom pair (i, j) is a reaction center if:

- There is a bond between atom i and atom j in product
- There is no bond between atom i and atom j in reactants

Graph Translation

- Translate the incomplete synthon to the final reactant
- A variational graph to graph framework
 - A latent variable z is introduced to capture the uncertainty during translation



Experiments

- Experiment Setup
 - Benchmark data set USPTO-50K, containing 50k atom-mapped reactions
 - Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Results of all baselines are directly taken from (Dai et al., 2019).

Table 2. Top-k exact match accuracy when reaction class is unknown. Results of all baselines are taken from (Dai et al., 2019).

Methods $\frac{\text{Top-}k \text{ accu}}{1}$	curacy %		Methods	Top- k accuracy %					
	1	3	5	10	Wicthods	1	3	5	10
	Temp	plate-free			Template-free				
Seq2seq G2Gs	37.4 61.0	52.4 81.3	57.0 86.0	61.7 88.7	Transformer G2Gs	37.9 48.9	57.3 67.6	62.7 72.5	/ 75.5
Template-based						Templ	ate-based		
Retrosim Neuralsym GLN	52.9 55.3 64.2	73.8 76.0 79.1	81.2 81.4 85.2	88.1 85.1 90.0	Retrosim Neuralsym GLN	37.3 44.4 52.5	54.7 65.3 69.0	63.3 72.4 75.6	74.1 78.9 83.7

Conclusion

- Drug discovery is slow and expensive
 - Great potential for AI in accelerating the process
- Great representation learning for drug discovery
 - Properties prediction
 - De novo molecule design and optimization
 - Retrosynthesis
- Next Step: Drug Discovery with Limited Labeled Data
 - Self-supervised Learning
 - Multi-task/Transfer Learning, Few-shot Learning

Thanks!

- Current Students
 - Meng Qu
 - Zhaocheng Zhu
 - Andreea Deac
 - Louis-Pascal Xhonneux
 - Shengchao Liu
 - Chence Shi
 - Minkai Xu
- Collaborators and previous students:, Yoshua Bengio, Pietro Liò, Fanyun Sun, Hongyu Guo, Jordan Hoffmann, Vikas Verma,....

SAMSUNG