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Graph from Albert-Laszl6 Barabasi’ s SIGIR09 keynote




Protein-Protein Interaction Graph

https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-networks



Drug-Protein Interaction Graph
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Knowledge Graphs

* Multiple types of edges

* Each corresponds to a relation type

* A set of facts, each of which 1s represented as a triplet
* (Bill Gates, CoFounder, Microsoft)
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Various Applications on Graphs

* Predicting whether a user 1s a democratic or republican in Facebook?
* Recommending friends in social networks
* Predicting missing facts on knowledge graphs

* Predicting the effective drugs for a target disease 1n a biomedical
knowledge graph, a.k.a. drug repurposing

* Predicting the chemical properties of molecules

* Most of these applications require good feature representation of
osraphs!!



Graphs as Bridges Between System 1 and

System II Reasoning

* Existing deep learning systems are mainly good
at perception
* E.g., recognize the objects in images
* System I Reasoning

* Real-world problems are very complex

* Need to understand the relationships between different
facts or high-level semantic variables

* System II Reasoning

* Using graphs to capture the relationship between
high-level semantic variables




Outline

* Unsupervised Graph Representation Learning
* Relational Reasoning with Graph Representation Learning
* Graph Representation Learning for Drug Discovery
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Learning Node Representations
(LINE, Tang et al. 2015)

- Node Classification

— - Node Clustering
20000 s@Ee® . < -
. 6550 Gaep @D ° - Link Prediction

- Recommendation

4 Q000 @e0® 10

Network Node representations

« E.g., Facebook social network -> user representations (features)-> friend
recommendation

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15.



https://arxiv.org/abs/1503.03578

Visualizing Graphs and High-Dimensional
Data ( LargeVis, Tang et al. 2016)

O e

oo ®
:f. [
00.

S o

High-dimensional Data

Jian Tang, Jingzhou Liu, Ming Zhang and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16.



https://arxiv.org/abs/1602.00370

Knowledge Graph Embedding

* Knowledge graphs: a set of facts represented as triplets
* (head entity, relation, tail entity) or (h,r,t)

* Knowledge graph embedding: learning low-dimensional
representations of entities and relations

* A fundamental task on knowledge graphs: predicting missing links
* Key Idea: implicitely model and infer logical rules

Wife (X,Y) => Husband (Y,X)
Father (X,Y) A Father (Y,Z) => GrandFather (X,Z)

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.” ICLR’19.



https://openreview.net/pdf%3Fid=HkgEQnRqYQ

RotatE: Relation as Elementwise Rotation
in Complex Space (Sun et al. 2019)

» Representing entities in complex vector space, i.e., h, t € C¥
* Each relation r as an element-wise rotation from the head entity h to
the tail entity t, 1.e.,

t; = hiri, where |7"l'|=1

* Modeling different logical rules
 Symmetric (h, r, t) ® hy

e Inverse hr-t|

* Composition t

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.” ICLR’19.



https://openreview.net/pdf%3Fid=HkgEQnRqYQ

GraphVite: A High-performance and General
Graph Embedding System (Zhu et al. 2019)

* A system specifically designed for learning graph embeddings with GPUs

* Super efficient!! Take only one minute for learning node representations of
a graph with one-million nodes

° https :/ / graphV1te'10 Knowledge Graph Graph & High-dimensional
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Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang. “GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding”. WWW’19. 16



https://graphvite.io/
https://arxiv.org/pdf/1903.00757.pdf

WikidataSM: a Large-scale Knowledge
Graph

* Contains 5 million entities and also the the descriptions of entities

* Pretrained knowledge graph embeddings with WikidataSM:
https://graphvite.io/pretrained models
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https://graphvite.io/pretrained_models

Joint Pretrained Language Representations and
Knowledge Graph Embeddings
(Wang et al. 2019)

* Entities are encoded with Language models on the entity descriptions
* Knowledge graph embedding and language representation space are aligned.

L=Lkgkg+Lrm
/ \

Knowledge graph Language model
embedding loss loss
Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, Jian Tang. KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language 18

Representation. arXiv:1911.06136.



vGraph: Combining Community Detection and
Node Representation Learning (Sun et al. 2019)

* Two classical tasks on graphs:
* Community detection
* Node representation Learning

* vGraph: a generative model for joint community detection and node
representation learning

n=1, .. V|
( m=1, ..., degree(W,)
¢M /\
|
v 9

(a) vGraph (b) Hierarchical vGraph
p

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang. vGraph: A Generative Model for Joint Community Detection and Node Representation Learning. NeurlPS’19.
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Relational Prediction and Reasoning

O Object labels

u Object features
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Visual relational reasoning
(Hudson et al. 2019)
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Q: What Cason, CA soccer team
features the son of Roy_Lassiter?

|

He is the father
Roy Lassiter

of LA Galaxy
player Ariel
Lassiter.
Ariel
Lassiter
Agned
LA .
with LA Galaxy...
Galaxy

v (Ding et al. 2019)

knowledge graphs

Multi-hop Question answering
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Statistical Relational Learning

* Probabilistic graphical models for relational data

* Markov Networks (Ross et al. 1980)
* Conditional Random Fields (Lafferty et al. 2001)
* Markov Logic Networks (Richardson and Domingos, 2006)

* Pros:
 Captures uncertainty and domain knowledge
.. 1
* Collective inference plyvixv) = Z6c0) I voiiyixv)
(i,j)eE
* Cons:

- . Figure: Conditional Random Fields
* Limited model capacity

* Inference 1s difficult

22



Graph Representation Learning

Hidden layer Hidden layer
hY

* Graph Neural Networks A _
* Graph convolutional Networks (Kipf et al. 2016) R . ‘ o
» Graph attention networks (Velickovic et al. 2017) “ T e '

— > SN O
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* Neural message passing (Gilmer et al. 2017)

* Node Embedding and Knowledge Graph Embedding

* DeepWalk, LINE, TransE, RotatE (Sun et al. 2019) Gr;ph Conlvomt\ionm Nétworks
(Kipf et al. 2016)

* Pros:
* Learning effective node (and relation) representations i h
» High model capacity r
* Cons RotatE
* Independent inference -t hr (Sun et al. 2019)
1r-u
tl >
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Can we combine the two learning frameworks?



Semi-supervised Object Classification

* Given G= (V, E, xy)
* V =V, UVy: objects/nodes
* E: edges
* Xy: object features

* Give some labeled objects V; , we want to infer the labels of the rest of
objects V,

* Many other tasks on graphs can be formulated as object classification
* E.g., link classification

25



GMNN: Graph Markov Neural Networks
(Qu, Bengio, and Tang, ICML’19)

* Towards combining statistical relational learning and graph neural
networks
* Combining CRFs + GNN5s

* Learning effective node representations for predicting the node labels
* Modeling the label dependencies of nodes

* State-of-the-art performance
* semi-supervised node classification
* unsupervised node representation
 link classification

Meng Qu, Yoshua Bengio, Jian Tang. “GMNN: Graph Markov Neural Networks”. In ICML 19.

26



GMNN: Graph Markov Neural Networks

* Model the joint distribution of object labels y;; conditioned on object
attributes Xy, 1.e., pg (yy [Xy ), with a conditional random field

* Learning the model parameters ¢ by maximizing the lower-bound of
log-likelihood of the observed data, log p (v, [Xy)

log py (yr|xv) >
S0 (yu xv) logpg(yL,yulxv) —log ge(yulxv )

27



Optimization with Pseudolikelihood
Variational-EM

* E-step: fix p, and update the variational distribution qg (yy|Xy) to
approximate the true posterior distribution pg (yy |y, Xy ).

* M-step: fix qg and update py to maximize the lower bound
U(¢) = Eqy(yu 1xv) 108 P (YL, YU lxV)]

* Directly optimize the joint likelihood is difficult due to the partition
function in p, instead we optimize the pseudolikelihood function

pr(®) 2 Egy(yulxv)[ D 10896 (ynlyvin, xv)]
nev

= Eao (v v [ 2 1086 (9w, xv )

neVv

28



Inference/E-step: approximate p (yy|y., Xy)

* Approximate it with variational distribution q4 (yy|Xy ). Specifically
we use mean-field method:

w(yulxv) = || ao(ynlxv)
nelU

* We parametrize each variational distribution with a Graph Neural
Network

qo(yn|xyv) = Cat(y,|softmax(Wyhy ,,))

Object representations learned by GNN

29



Learning/M-step:

* The log-pseudo likelihood:

(pr(9) 2 Boyyuix)[ D 108 po(Ynlyvin: xv)]
nevVv

— EQQ(YU|XV) [Z lnggb(yrn‘YNB(n)? XV)]

neVv
* According to the inference, only the D¢ (Yn|YNB(n): Xy) is required

* Parametrize Po(¥nl¥NBm) Xv) with another GCN

p¢(yn|yNB<n) , xy ) = Cat(yy,|softmax(W,hy ,,))

30



Overall Optimization Procedure

* Two Graph Neural Networks Collaborate with each other
* Py learning network, modeling the label dependency
* (g: Inference network, learning the object representations

* qp Infer the labels of unlabeled objects trained with supervision from
Py and labeled objects

* py 1s trained with a fully labeled graph, where the unlabeled objects
are labeled by gy

31



Reasoning on Knowledge Graphs

* A set of facts KG = {(h, ,t)} represented as triplets
* (Bill Gates, Co Founder, Microsoft)

* A fundamental problem: predicting the missing facts by reasoning
with existing facts

—_y
. >
friend?™ o= -

Gates
Foundation

32



Probabilistic Logic Neural Networks for
Reasoning (Qu and Tang, NeurIPS’19. )

* Towards combining Markov Logic Networks and knowledge graph
embedding

* Leverage logic rules and handling their uncertainty
 Effective and efficient inference

* Define the joint distribution of facts with Markov Logic Network

* Optimization with variational EM

* Parametrize the variational distribution with knowledge graph embedding
methods

Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning.” In NeurlPS’2019.

33



pLogicNet

* Define the joint distribution of facts with an MLN

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)

Born in N\ City of = Nationality 1.5

v

(London, City of, UK) (Alan Turing, Politician of, UK)

* Learning by maximizing the variational lower-bound of the log-
likelihood of observed facts

log pw(vo) = L(q9, Pw) = Eqy(vi)10gPw(Vo, V) —log qo(ve)]

34



Other Projects Related to GNNs



Graph Neural Networks for Bayesian Meta-
Learning (Qu et al. 2020)

* The prototype vectors of tasks v are treated as random variables

* The prior of v are encoded with a GNN on the task graph, p(yt|G).

* The likelihood 1s defined on the support set, p(ys|xs, V7).

« Sample from the posterior p(v|X, Vs, G) with Langevin Dynamics
* Similar to MAML but can handle the uncertainty of vy

Lo E el Global Task Graph Graph-based Prior
S B S : - , . ) a 0000
2 VTI|X angevin
p( T| $.Ys,9) Dynamics f eeeee
Relation @ [ [, —[]. ; Y
Relation f | —(1— (1.  BERT p(ys|xs, vr)
Relationy [ -1, 1. |
Few Labeled Sentences Likelihood

36



Graph Neural Networks with Neural
ODEs (Xhonneux and Qu et al. 2020)

* Graph Neural Networks: discrete dynamics of node representations
with graph convolutional layers
* Can we generalize 1t to continuous dynamics?

* Model the dynamics of node representations with Neural ODEs

* Inspired by epidemiological models, dynamic of node representations

* Depending on the infection from neighbors: AH(t)
* Nature recovery: -H(t) -

 Initial condition: E Q % ’_. £ ® @
dH (t é% P2 Eos i
) _ (A-DHHH)+E |© ||® & e
d¢ N gt .

Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang. Continuous Graph Neural Networks. arXiv:1912.00967
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The Process of Drug Discovery

* A very long and costly process
* On average takes more than 10 years and $2.5B to get a drug approved

* Big opportunities for Al to accelerate this process

: S Preclinical ..
Lead Discovery Lead Optimization Clinical
Target Study .
2 years 3 years Trial
2 years
Screen millions of Modify the molecule In-vitro and
functional molecplfzs; to improve specific In-vivo Multiple Phases
Found by serendipity: properties. experiments;

Penicillin e.g. toxicity, SA synthesis



Medical Knowledge Graph Construction

e >M Entities, ~300M facts

* Disease GD ‘ Ctd STITCH
* Drug ‘
Phenotype DrugBank omparatll:\;:tacl);;lgggenomlcs
 Gene
* Protein =TBER %ISE ASE
° Slde foGCt Side Effect Resource NTOLOGY
 Biomedical literature
' BRENDA
GENEONTOLOGY €/Ensembl T4 Gt BN

Publfed


http://stitch.embl.de/cgi/input.pl%3FUserId=I1jqxFrUtIjl&sessionId=ymD4LkudOtr9

Medical Knowledge Graph Representation
Representation and Applications

» Each entity 1s a represented as a vector
* Disease, Drug, Phenotype, Gene, Protein, Side effect

* Applications
* Drug repurposing
* Drug side effect prediction



Drug Repurposing with Medical
Knowledge Graph for COVID-19

* Predict the disease-drug relationships on the medical knowledge graph
* Diseases, proteins, drugs

Set Operation
\\\ ~ ) \ﬁ \ >

Hash Function

Protein-Protein Network

7



Drug-Drug Adverse Effect Prediction
(Deac et al. 2019)

* Predicting the side effects of two drugs

* Based on medical knowledge graph
* Based on molecular graph structures

E Polypharmacy E

Doxycycline@\ side effects/& Simvastatin
Tachycardia? Inflammation? Bradycardia? e Gastrointestinal bleed?

Iy E ry E 1
Ciprofloxacin r1_ﬁMupirocin (\\ [ /

DDI predictor (multi-label)

X T
= N o T x
: ST o

A Drug O Protein E Node feature vector
ry Gastrointestinal bleed side effect A—@ Drug-protein interaction Drug1 Drug 2
> Bradycardia side effect ©@—O Protein-protein interaction
Knowledge graph based (Zitnik et al. 2018) Molecular graph structures (Deac et al., 2019)

» Marinka Zitnik, Monica Agrawal, Jure Leskovec. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018.
* Andreea Deac, Yu-Hsiang Huang, Petar VeliCkovic, Pietro Lio, Jian Tang. Drug-Drug Adverse Effect Prediction with Graph Co-Attention.
arXiv:1905.00534



Molecule Properties Prediction

* Predicting the properties of molecules 1s very important in many
stages of drug discovery
* Virtual screening

* Represent the whole molecule (graph) as a feature vector



Unsupervised and Semi-supervised Learning

for Molecular Graph Representation (Sun et al.
ICLR 20)

* Most existing work on molecular representation are based on
supervised learning with graph neural networks

* Require a large number of labeled data
* However, the number of labeled data 1s very limited
* Leverage the unlabeled data!!

DFT Targets
~ 103 seconds [&,wp, --..

Message Passing Neural Net

R\ L e
! 7 \\ [ & 2R\ o
VY J_pe & eee

R\ N2 ~e, 2

,n.«_% s

~ 1072 seconds

: : Unsupervised and semi-supervised methods (Sun et al. 19
Supervised Methods (Gilmer et al. 17) P P ( )
Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning

Gilmer et al. Neural Message Passing for Quantum Chemistry. ICML'17. via Mutual Information Maximization. ICLR’20



Application: Finding Effective Antibiotics
for Secondary Infections in COVID-19

* A high proportion of non-surviving patients of COVID 19 developed a
secondary infection (Zhou et al. 2020) = = [ =

* Finding effective antibiotics

* Predict antibacterial properties
e Collaboration with MIT
e https://www.aicures.mit.edu/tasks



https://www.aicures.mit.edu/tasks

De Novo Molecule Design and Optimization

* Deep generative models for data generation

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke
perfect English.

The scientist named the population, after their distinctive horn, Ovid’'s Y / (
Unicorn. These four-horned, silver-white unicorns were previously
unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La \ . P \’ \)3
g 9 y \ 5 - S

Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time
we reached the top of one peak, the water looked blue, with some

/ ALR 4 1% =
crystals on top,” said Pérez. = ; Q/\"/

Pérez and his friends were astonished to see the unicorn herd. These
creatures could be seen from the air without having to move too much to
see them — they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that
the creatures also spoke some fairly regular English. Pérez stated, “We
can see, for example, that they have a common ‘language,’ something like
a dialect or dialectic.”

Image generation Text generated by by GPT-2, Graphs?
(by StyleGAN, From Internet) Examples from Internet




GraphAF: a Flow-based Autoregressive Model
for Molecular Graph Generation
(Shi & Xu et al. ICLR’20)

* Formulate graph generation as a sequential decision process
* In each step, generate a new atom
* Determine the bonds between the new atoms and existing atoms

/ ) / ) e 1V (T ) o
' LA P . g TSN RN TN N G Zo |\ &
I | I | l | I o | o o \
\ ) \ ) ) \= ) \= 7Y Z1 \\ &1
&11-+> 521-*[[ 531—*[[ \
(TP "o - N \ f11
[ ] D G I G =
{ 2 | { © | I‘ © S © | 27 = Zy || &2
-=--* Noise from N(0, ) -’ —— == ————
€22-+] €32->] 72 €21
@ Node: Atom [T Pttt
© @ | z e
Edge: Single bond ' L ' | 22 22
| ¥e '
Edge: Double bond \ = \=_ = Z3 &3
Ean-
............. Edge: No bond 3?_*_[],__\
© |
—> GCN + NodeMLP + Transformation + Argmax : (lg |
......... |
= GCN + EdgeMLP + Transformation + Argmax \__ ;
(a) Sampling Framework (b) Autoregressive Flow

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang. GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. ICLR’20



Molecule Generation

Method Validity  Validity w/o check

Uniqueness Novelty Reconstruction

JT-VAE 100% —

GCPN 100% 20%"
MRNN 100% 65%

GraphNVP  4260% — —————— — —_

GraphAF ' 100% 68%

100%* 100%* 76.7%

99.97%* 100%* —
99.89% 100% —







Molecule Optimization

* Properties

* Penalized logP
* QED (druglikeness)

Penalized logP QED
Method st  2nd  3rd  Validity 1st  2nd | 3rd  Validity
ZINC (Dataset) 452 430 423 100.0% 0948 0948 0948 100.0%
JT-VAE (Jinctal, 2018) 530 493 449 1000% 0925 0911 0910 100.0%
GCPN (Youetal,20182)  7.98 7.85 7.80 100.0% 0.948 0947 0946 100.0%
MRNN! (Popovactal,2019) 863 608 473 100.0% 0844 079 0736 100.0%
GraphAF 1223 1129 1105 1000% 0.948 0.948 0947 100.0%

P

12.23

-~

11.05

(a) Penalized logP optimization

11.29

—

10.83

0.948 0.948
79 "= 0 [ Br
0.947 0.947

(b) QED optimization



Constrained Optimization

O/o—\OI o/\ol
\o _/o?)( T O(\JO)?X

-30.21 -22.87
Qh ALy — NHxNH
14.32 3.58

(¢) Constrained optimization



Retrosynthesis Prediction

* Once a molecular structure i1s designed, how to synthesize 1t?

* Retrosynthesis planning/prediction

* Identify a set of reactants to synthesize a target molecule

N\ N/v
T

Product (Given)

Predict Reactants
—

Reaction Type
(optional)

Reactant A

Reactant B



A Graph to Graphs Framework for
Retrosynthesis Prediction (Shi et al. 2020)

* Each molecule 1s represented as a molecular graph

* Formulate the problem as a graph (product molecule) to a set of graphs
(reactants)

* The whole framework are divided into two stages
e Reaction center 1identification
* Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
In Submission, 2020.



The G2Gs Framework (Shi et al. 2020)

ﬂ—————————————————————————————————————————————————————\

e
A

: N . Reaction

| /ﬁ/\' —> Center

: ‘ ’ |dentification
\\ \

e e e e e — — — e — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

— — — — — — — — —

Variational
Graph
Translation

Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction
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Experiments

* Experiment Setup
* Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

* Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Taple 2. Top-k exact match accuracy when reaction class is un-
Results of all baselines are directly taken from (Dai et al., 2019).  known. Results of all baselines are taken from (Dai et al., 2019).

Top-k accuracy % Top-k accuracy %

Methods Methods
1 3 5 10 1 3 5 10
Template-free Template-free
Seq2seq 37.4 52.4 57.0 61.7 Transformer 37.9 57.3 62.7 /
G2Gs 61.0 81.3 86.0 88.7 G2Gs 48.9 67.6 72.5 75.5
Template-based Template-based
Retrosim 52.9 73.8 81.2 88.1 Retrosim 37.3 54.7 63.3 74.1
Neuralsym 553 76.0 81.4 85.1 Neuralsym 44 .4 65.3 72.4 78.9

GLN 64.2 79.1 85.2 90.0 GLN 52.5 69.0 75.6 83.7




Take Away

* Graph representation learning

* A growing research topic in machine learning focusing on deep learning for
graph-structured data

* Graph Representation learning for relational/logical reasoning
* Graph as bridges between system I and II reasoning

* Graph representation learning for drug discovery

* Many data 1n this domain are graph-structured, e.g., molecules and medical
knowledge graph
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