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Protein-Protein Interaction Graph

https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/protein-protein-interaction-networks



Drug-Protein Interaction Graph

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002503



Knowledge Graphs

• Multiple types of edges
• Each corresponds to a relation type

• A set of facts, each of which is represented as a triplet
• (Bill_Gates, CoFounder, Microsoft)

friend?



Molecules

Under review as a conference paper at ICLR 2020
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Various Applications on Graphs

• Predicting whether a user is a democratic or republican in Facebook?
• Recommending friends in social networks
• Predicting missing facts on knowledge graphs
• Predicting the effective drugs for a target disease in a biomedical

knowledge graph, a.k.a. drug repurposing
• Predicting the chemical properties of molecules
• …
• Most of these applications require good feature representation of 

graphs!!



Graphs as Bridges Between System I and
System II Reasoning
• Existing deep learning systems are mainly good

at perception
• E.g., recognize the objects in images
• System I Reasoning

• Real-world problems are very complex
• Need to understand the relationships between different

facts or high-level semantic variables
• System II Reasoning

• Using graphs to capture the relationship between
high-level semantic variables

9

Figure 1: The Neural State Machine is a graph network that simulates the computation of an automaton. For the
task of VQA, the model constructs a probabilistic scene graph to capture the semantics of a given image, which
it then treats as a state machine, traversing its states as guided by the question to perform sequential reasoning.

Motivated to alleviate these deficiencies and bring the neural and symbolic approaches more closely
together, we propose the Neural State Machine, a differentiable graph-based model that simulates
the operation of an automaton, and explore it in the domain of visual reasoning and compositional
question answering. Essentially, we proceed through two stages: modeling and inference. Starting
from an image, we first generate a probabilistic scene graph [41, 47] that captures its underlying
semantic knowledge in a compact form. Nodes correspond to objects and consist of structured
representations of their properties, and edges depict both their spatial and semantic relations. Once
we have the graph, we then treat it as a state machine and simulate an iterative computation over
it, aiming to answer questions or draw inferences. We translate a given natural language question
into a series of soft instructions, and feed them one-at-a-time into the machine to perform sequential
reasoning, using attention to traverse its states and compute the answer.

Drawing inspiration from Bengio’s consciousness prior [12], we further define a set of semantic
embedded concepts that describe different entities and aspects of the domain, such as various kinds
of objects, attributes and relations. These concepts are used as the vocabulary that underlies both the
scene graphs derived from the image as well as the reasoning instructions obtained from the question,
effectively allowing both modalities to “speak the same language”. Whereas neural networks typically
interact directly with raw observations and dense features, our approach encourages the model to
reason instead in a semantic and factorized abstract space, which enables the disentanglement of
structure from content and improves its modularity.

We demonstrate the value and performance of the Neural State Machine on two recent Visual Question
Answering (VQA) datasets: GQA [39] which focuses on real-world visual reasoning and multi-step
question answering, as well as VQA-CP [3], a recent split of the popular VQA dataset [2, 25] that
has been designed particularly to evaluate generalization. We achieve state-of-the-art results on
both tasks under single-model settings, substantiating the robustness and efficiency of our approach
in answering challenging compositional questions. We then construct new splits leveraging the
associated structured representations provided by GQA and conduct further experiments that provide
significant evidence for the model’s strong generalization skills across multiple dimensions, such
as novel compositions of concepts and unseen linguistic structures, validating its versatility under
changing conditions.

Our model ties together two important qualities: abstraction and compositionality, with the respective
key innovations of representing meaning as a structured attention distribution over an internal vo-
cabulary of disentangled concepts, and capturing sequential reasoning as the iterative computation
of a differentiable state machine over a semantic graph. We hope that creating such neural form
of a classical model of computation will encourage and support the integration of the connection-
ist and symbolic methodologies in AI, opening the door to enhanced modularity, versatility, and
generalization.
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Outline

• Unsupervised Graph Representation Learning
• Relational Reasoning with Graph Representation Learning
• Graph Representation Learning for Drug Discovery
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Learning Node Representations
(LINE, Tang et al. 2015)

• Node Classification
• Node Clustering
• Link Prediction
• Recommendation
• …

• E.g., Facebook social network -> user representations (features)-> friend
recommendation

Network Node representations

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15.

https://arxiv.org/abs/1503.03578


Visualizing Graphs and High-Dimensional
Data ( LargeVis, Tang et al. 2016)

…. ….

….
…. ….

….

Networks 2D/3D Layout

Heatmaps

Network DiagramsScatter Plots

….

High-dimensional Data

Jian Tang, Jingzhou Liu, Ming Zhang and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16.

https://arxiv.org/abs/1602.00370


Knowledge Graph Embedding

• Knowledge graphs: a set of facts represented as triplets
• (head entity, relation, tail entity) or (h,r,t)

• Knowledge graph embedding: learning low-dimensional 
representations of entities and relations
• A fundamental task on knowledge graphs: predicting missing links
• Key Idea: implicitely model and infer logical rules

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.” ICLR’19.

Wife (X,Y) => Husband (Y,X)
Father (X,Y) ⋀ Father (Y,Z) => GrandFather (X,Z)

friend?

https://openreview.net/pdf%3Fid=HkgEQnRqYQ


RotatE: Relation as Elementwise Rotation 
in Complex Space (Sun et al. 2019)
• Representing entities in complex vector space, i.e., 𝐡, 𝐭 ∈ ℂ𝒌

• Each relation r as an element-wise rotation from the head entity 𝐡 to 
the tail entity 𝐭, i.e., 

• Modeling different logical rules
• Symmetric
• Inverse
• Composition

(h, r, t) 

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. “RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.” ICLR’19.

t" = h"r", where |𝑟#|=1 

https://openreview.net/pdf%3Fid=HkgEQnRqYQ


GraphVite: A High-performance and General 
Graph Embedding System (Zhu et al. 2019)
• A system specifically designed for learning graph embeddings with GPUs
• Super efficient!! Take only one minute for learning node representations of

a graph with one-million nodes
• https://graphvite.io

Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang. “GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding”. WWW’19.
16

https://graphvite.io/
https://arxiv.org/pdf/1903.00757.pdf


Wikidata5M: a Large-scale Knowledge
Graph
• Contains 5 million entities and also the the descriptions of entities
• Pretrained knowledge graph embeddings with Wikidata5M:

https://graphvite.io/pretrained_models

https://graphvite.io/pretrained_models


Joint Pretrained Language Representations and
Knowledge Graph Embeddings
(Wang et al. 2019)
• Entities are encoded with Language models on the entity descriptions

• Knowledge graph embedding and language representation space are aligned.

Johannes Kepler
Johannes Kepler was a German 
astronomer … best known for 
his laws of planetary motion.

German

Germany is a country in Central 
and Western Europe … Astronomer

An astronomer is a scientist in 
the field of astronomy …

Kepler's laws of planetary motion
… are three scientific laws describing 
the motion of planets around the Sun, 
published by Johannes Kepler.

NASA

… is an independent agency … 
for the civilian space program …

Kepler space telescope
… is a retired space telescope 
launched by NASA to … Named 
after astronomer Johannes Kepler.

Named after

Ethn
ic 

gr
ou

p

Occupation

Operator

Published by

Pre-training Language Representation Model

KE Task PLM Task

PLM Corpora

… Kepler's first major astronomical 
work, Mysterium Cosmographicum 
(The Cosmographic Mystery, 1596), 
was the first published defense of the 
Copernican system. Kepler claimed 
to have had an epiphany on July 19, 
1595, while teaching in Graz, …

KE Loss PLM Loss+

Figure 1: A demonstration for KEPLER structure. By jointly training with knowledge embedding (KE) and pre-
training language representation model (PLM) objectives, our framework can implicitly incorporate knowledge
into the language representation model.

parameters (Lan et al., 2019; Raffel et al., 2019) to
pre-training models.

Recently some works attempt to incorporate
knowledge information in pre-training. Zhang
et al. (2019) introduce pre-processed knowledge
embeddings into the Transformer architecture of
BERT (Devlin et al., 2019b). With similar ideas,
Peters et al. (2019) incorporate an integrated en-
tity linker in their models. Besides, Logan et al.
(2019); Hayashi et al. (2019) utilize relations be-
tween entities inside one sentence to help train
better generation models. Despite the promis-
ing results those methods bring with knowledge-
enhanced techniques, they either use fixed external
knowledge information or have complex structures
or pipelines to handle entities within sentences.

Knowledge Graph Embeddings In recent years
knowledge embeddings have been extensively stud-
ied through predicting missing links in graphs.
Conventional models define score functions for re-
lation triples (h, r, t) and predict head or tail enti-
ties with scores of candidate entities. For example,
TransE (Bordes et al., 2013) treats tail entities as
translations of heads, while DistMult (Yang et al.,
2015) use matrix multiplications as score functions
and ComplEx (Trouillon et al., 2016) adopt com-
plex operations based on it. RotatE (Sun et al.,
2019a) combines the advantages of both of them.

Among these works, Xie et al. (2016) propose

to utilize entity descriptions as an external infor-
mation source and introduce an entity descrip-
tion encoder to enhance the TransE score function.
Though similar to our method, Xie et al. (2016)
aim at utilizing entity descriptions to help knowl-
edge representation learning, while we take entity
descriptions as a tool to incorporate external knowl-
edge in our model.

3 KEPLER Model

In this section, we introduce the structure of our
KEPLER model, and how we combine two training
goals of masked language modeling and knowledge
representation learning.

3.1 Training Objectives

To incorporate world knowledge into our pre-
trained language representation models (PLMs),
we design a multi-task loss as shown in Figure 1
and Equation 1,

L = LKE + LLM , (1)

where LKE represents knowledge embedding
loss and LLM represents language model loss.
Since our PLMs are involved in both tasks, jointly
optimizing the two objectives could implicitly inte-
grate knowledge from external graphs with text en-
coders, while keeping the strong abilities of PLMs
for syntactic and semantic understanding.

Knowledge graph
embedding loss

Language model
loss

18Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, Jian Tang. KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language 
Representation. arXiv:1911.06136.



vGraph: Combining Community Detection and
Node Representation Learning (Sun et al. 2019)
• Two classical tasks on graphs:
• Community detection
• Node representation Learning

• vGraph: a generative model for joint community detection and node
representation learning

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang. vGraph: A Generative Model for Joint Community Detection and Node Representation Learning. NeurIPS’19.

vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

(a) vGraph (b) Hierarchical vGraph

Figure 1: The diagram on the left represents the graphical model of vGraph and the diagram on the right represents
the graphical model of the hierarchical extension. �n is the embedding of node wn,  denotes the embedding of
communities, and ' denotes the embeddings of nodes used in p(c|z). Refer to Eq. 2 and Eq. 3.

variable. Compared with these methods, vGraph parameterizes the distributions with node and community embeddings,
and all the parameters are trained with backpropagation.

3 Problem Definition

Graphs are ubiquitous in the real-world. Two fundamental tasks on graphs are community detection and learning node
embeddings, which focus on global and local graph structures respectively and hence are naturally complementary. In
this paper, we study jointly solving these two tasks. Let G = (V, E) represent a graph, where V = {v1, . . . , vV } is a set
of vertices and E = {eij} is the set of edges. Traditional graph embedding aims to learn a node embedding �i 2 Rd

for each vi 2 V where d is predetermined. Community detection aims to extract the community membership F for
each node. Suppose there are K communities on the graph G, we can denote the community assignment of node vi as
F(vi) ✓ {1, ...,K}. We aim to jointly learn node embeddings � and community affiliation of vertices F .

4 Methodology

In this section, we introduce our generative approach vGraph, which aims at collaboratively learning node representations
and detecting node communities. Our approach assumes that each node can belong to multiple communities representing
different social contexts [7]. Each node should generate different neighbors under different social contexts. vGraph
parameterizes the node-community distributions by introducing node and community embeddings. In this way, the node
representations can benefit from the detection of node communities. Similarly, the detected community assignment can
in turn improve the node representations. Inspired by existing spectral clustering methods [6], we add a smoothness
regularization term that encourages linked nodes to be in the same communities.

4.1 vGraph

vGraph models the generation of node neighbors. It assumes that each node can belong to multiple communities. For
each node, different neighbors will be generated depending on the community context. Based on the above intuition,
we introduce a prior distribution p(z|w) for each node w and a node distribution p(c|z) for each community z. The
generative process of each edge (w, c) can be naturally characterized as follows: for node w, we first draw a community
assignment z ⇠ p(z|w), representing the social context of w during the generation process. Then, the linked neighbor c
is generated based on the assignment z through c ⇠ p(c|z). Formally, this generation process can be formulated in a
probabilistic way:

p(c|w) =
X

z

p(c|z)p(z|w). (1)

vGraph parameterizes the distributions p(z|w) and p(c|z) by introducing a set of node embeddings and community
embeddings. Note that different sets of node embeddings are used to parametrize the two distributions. Specifically,
let �i denote the embedding of node i used in the distribution p(z|w), 'i denote the embedding of node i used in

3

vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

(a) (b)

Figure 2: In panel (a) we visualize the result on the facebook107 dataset using vGraph. In panel (b) we visualize
the result on Dblp-full dataset using vGraph. The coordinates of the nodes are determined by t-SNE of the node
embeddings.

(a) (b) (c)

Figure 3: We visualize the result on a subset of Dblp dataset using two-level hierarchical vGraph. The coordinates of
the nodes are determined by t-SNE of the node embeddings. In panel (a) we visualize the first-tier communities. In
panel (b), we visualize the second-tier communities. In panel (c) we show the corresponding hierarchical tree structure.

method on both tasks compared to competitive baselines. Furthermore, our model is also readily extendable to detect
hierarchical communities.
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Relational Prediction and Reasoning

?
?

?
?

?
?

Object labels

Object features

friend?

Node classification

Reasoning on
knowledge graphs

Figure 1: The Neural State Machine is a graph network that simulates the computation of an automaton. For the
task of VQA, the model constructs a probabilistic scene graph to capture the semantics of a given image, which
it then treats as a state machine, traversing its states as guided by the question to perform sequential reasoning.

Motivated to alleviate these deficiencies and bring the neural and symbolic approaches more closely
together, we propose the Neural State Machine, a differentiable graph-based model that simulates
the operation of an automaton, and explore it in the domain of visual reasoning and compositional
question answering. Essentially, we proceed through two stages: modeling and inference. Starting
from an image, we first generate a probabilistic scene graph [41, 47] that captures its underlying
semantic knowledge in a compact form. Nodes correspond to objects and consist of structured
representations of their properties, and edges depict both their spatial and semantic relations. Once
we have the graph, we then treat it as a state machine and simulate an iterative computation over
it, aiming to answer questions or draw inferences. We translate a given natural language question
into a series of soft instructions, and feed them one-at-a-time into the machine to perform sequential
reasoning, using attention to traverse its states and compute the answer.

Drawing inspiration from Bengio’s consciousness prior [12], we further define a set of semantic
embedded concepts that describe different entities and aspects of the domain, such as various kinds
of objects, attributes and relations. These concepts are used as the vocabulary that underlies both the
scene graphs derived from the image as well as the reasoning instructions obtained from the question,
effectively allowing both modalities to “speak the same language”. Whereas neural networks typically
interact directly with raw observations and dense features, our approach encourages the model to
reason instead in a semantic and factorized abstract space, which enables the disentanglement of
structure from content and improves its modularity.

We demonstrate the value and performance of the Neural State Machine on two recent Visual Question
Answering (VQA) datasets: GQA [39] which focuses on real-world visual reasoning and multi-step
question answering, as well as VQA-CP [3], a recent split of the popular VQA dataset [2, 25] that
has been designed particularly to evaluate generalization. We achieve state-of-the-art results on
both tasks under single-model settings, substantiating the robustness and efficiency of our approach
in answering challenging compositional questions. We then construct new splits leveraging the
associated structured representations provided by GQA and conduct further experiments that provide
significant evidence for the model’s strong generalization skills across multiple dimensions, such
as novel compositions of concepts and unseen linguistic structures, validating its versatility under
changing conditions.

Our model ties together two important qualities: abstraction and compositionality, with the respective
key innovations of representing meaning as a structured attention distribution over an internal vo-
cabulary of disentangled concepts, and capturing sequential reasoning as the iterative computation
of a differentiable state machine over a semantic graph. We hope that creating such neural form
of a classical model of computation will encourage and support the integration of the connection-
ist and symbolic methodologies in AI, opening the door to enhanced modularity, versatility, and
generalization.
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Visual relational reasoning 
(Hudson et al. 2019)
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Figure 4: Case Study. Different forms of cognitive graphs in our results, i.e., Tree, Directed Acyclic Graph (DAG),
Cyclic Graph. Circles are candidate answer nodes while rounded rectangles are hop nodes. Green circles are the
final answers given by CogQA and check marks represent the annotated ground truth.

work but outputs answer spans with maximum
predicted probability. On Ans metrics, the im-
provement over the best competitor decreases
about 50%, highlighting the reasoning capacity of
GNN on cognitive graphs.

Case Study We show how the cognitive graph
clearly explains complex reasoning processes in
our experiments in Figure 4. The cognitive graph
highlights the heart of the question in case (1) –
i.e., to choose between the number of members in
two houses. CogQA makes the right choice based
on semantic similarity between “Senate” and “up-
per house”. Case (2) illustrates that the robust-
ness of the answer can be boosted by exploring
parallel reasoning paths. Case (3) is a semantic

retrieval question without any entity mentioned,
which is intractable for CogQA-onlyQ or even hu-
man. Once combined with information retrieval,
our model finally gets the answer “Marijus Ado-
maitis” while the annotated ground truth is “Ten
Walls”. However, when backtracking the reason-
ing process in cognitive graph, we find that the
model has already reached “Ten Walls” and an-
swers with his real name, which is acceptable and
even more accurate. Such explainable advantages
are not enjoyed by black-box models.

5 Related work

Machine Reading Comprehension The research
focus of machine reading comprehension (MRC)
has been gradually transferred from cloze-style
tasks (Hermann et al., 2015; Hill et al., 2015) to
more complex QA tasks (Rajpurkar et al., 2016)
recent years. Compared to the traditional compu-
tational linguistic pipeline (Hermann et al., 2015),

neural network models, for example BiDAF (Seo
et al., 2017a) and R-net (Wang et al., 2017), ex-
hibit outstanding capacity for answer extraction in
text. Pre-trained on large corpra, recent BERT-
based models nearly settle down the single para-
graph MRC-QA problem with performances be-
yond human-level, driving researchers to pay more
attention to multi-hop reasoning.

Multi-Hop QA Pioneering datasets of multi-hop
QA are either based on limited knowledge base
schemas (Talmor and Berant, 2018), or under mul-
tiple choices setting (Welbl et al., 2018). The
noise in these datasets also restricted the devel-
opment of multi-hop QA until high-quality Hot-
potQA (Yang et al., 2018) is released recently.
The idea of “multi-step reasoning” also breeds
multi-turn methods in single paragraph QA (Ku-
mar et al., 2016; Seo et al., 2017b; Shen et al.,
2017), assuming that models can capture informa-
tion at deeper level implicitly by reading the text
again.

Open-Domain QA Open-Domain QA (QA at
scale) refers to the setting where the search space
of the supporting evidence is extremely large.
Approaches to get paragraph-level answers has
been thoroughly investigated by the information
retrieval community, which can be dated back to
the 1990s (Belkin, 1993; Voorhees et al., 1999;
Moldovan et al., 2000). Recently, DrQA (Chen
et al., 2017) leverages a neural model to extract the
accurate answer from retrieved paragraphs, usu-
ally called retrieval-extraction framework, greatly
advancing this time-honored research topic again.
Improvements are made to enhance retrieval by
heuristic sampling (Clark and Gardner, 2018) or

Multi-hop Question answering

(Ding et al. 2019) 21



Statistical Relational Learning
• Probabilistic graphical models for relational data

• Markov Networks (Ross et al. 1980)
• Conditional Random Fields (Lafferty et al. 2001)
• Markov Logic Networks (Richardson and Domingos, 2006)

• Pros:
• Captures uncertainty and domain knowledge
• Collective inference

• Cons:
• Limited model capacity
• Inference is difficult

22

GMNN: Graph Markov Neural Networks

relational data is an important direction in machine learn-
ing with various applications, such as object classification
and link prediction. In this paper, we focus on a fundamen-
tal problem, semi-supervised object classification, as many
other applications can be reformulated as this problem.

Formally, the problem of semi-supervised object classifi-
cation considers a graph G = (V,E,xV ), in which V is a
set of objects, E is a set of edges between objects, and xV

stands for the attributes of all the objects. The edges in E

may have multiple types, which represent different relations
among objects. In this paper, for simplicity, we assume all
edges belong to the same type. Given the labels yL of a few
labeled objects L ⇢ V , the goal is to predict the labels yU

for the remaining unlabeled objects U = V \ L.

This problem has been extensively studied in the literature
of both statistical relation learning (SRL) and graph neural
networks (GNN). Essentially, both types of methods aim to
model the distribution of object labels conditioned on the
object attributes and the graph structure, i.e., p(yV |xV , E).
Next, we introduce the general idea of both methods. For
notation simplicity, we omit E in the following formulas.

3.2. Statistical Relational Learning

Most SRL methods model p(yV |xV ) with conditional ran-
dom fields, which employ the following formulation:

p(yV |xV ) =
1

Z(xV )

Y

(i,j)2E

 i,j(yi,yj ,xV ). (1)

Here, (i, j) is an edge in the graph G, and  i,j(yi,yj ,xV )
is the potential score defined on the edge. Typically, the
potential score is computed as a linear combination of some
hand-crafted feature functions, such as logical formulae.

With this formulation, predicting the labels for unlabeled
objects becomes an inference problem, i.e., inferring
the posterior label distribution of the unlabeled objects
p(yU |yL,xV ). Exact inference is usually infeasible due to
the complicated structures between object labels. Therefore,
some approximation inference methods are often utilized,
such as loopy belief propagation (Murphy et al., 1999).

3.3. Graph Neural Network

Different from SRL methods, GNN methods simply ignore
the dependency of object labels and they focus on learning
effective object representations for label prediction. Specif-
ically, the joint distribution of labels is fully factorized as:

p(yV |xV ) =
Y

n2V

p(yn|xV ). (2)

Based on the formulation, GNNs will infer the label distri-
bution p(yn|xV ) for each object n independently. For each
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E-Step: Inference

M-Step: Learning

PredictUpdate

UpdatePredict

Figure 1. Framework overview. Yellow and grey squares are la-
beled and unlabeled objects. Grey/white grids are attributes. His-
tograms are label distributions of objects. Orange triple circles are
object representations. GMNN is trained by alternating between
an E-step and an M-step. See Sec. 4.4 for the detailed explanation.

object n, GNNs predict the label in the following way:

h = g(xV , E) p(yn|xV ) = Cat(yn|softmax(Whn)),

where h 2 R|V |⇥d is the representations of all the objects,
and hn 2 Rd is the representation of object n. W 2 RK⇥d

is a linear transformation matrix, with d as the representa-
tion dimension and K as the number of label classes. Cat
stands for categorical distributions. Basically, GNNs focus
on learning a useful representation hn for each object n.
Specifically, each hn is initialized as the attribute repre-
sentation of object n. Then each hn is iteratively updated
according to its current value and the representations of n’s
neighbors, i.e., hNB(n). For the updating function, the graph
convolutional layer (GC) (Kipf & Welling, 2017) and the
graph attention layer (GAT) (Veličković et al., 2018) can be
used, or in general the neural message passing layer (Gilmer
et al., 2017) can be utilized. After multiple layers of update,
the final object representations are fed into a linear softmax
classifier for label prediction. The whole framework can be
trained in an end-to-end fashion with a few labeled objects.

4. GMNN: Graph Markov Neural Network

In this section, we introduce our approach called the Graph
Markov Neural Network (GMNN) for semi-supervised ob-
ject classification. The goal of GMNN is to combine the
advantages of both the statistical relational learning methods
and graph neural networks, so that we can learn effective ob-
jective representations for predicting object labels, as well as
model the dependency between object labels. Specifically,
GMNN models the joint distribution of object labels condi-
tioned on object attributes p(yV |xV ) by using a conditional
random field, which is optimized with a pseudolikelihood
variational EM framework. In the E-step, a graph neural
network is used to learn object representations for predicting
the object labels. In the M-step, another graph neural net-
work is employed to model the local dependency of object
labels. Next, we introduce the details of the approach.
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Figure: Conditional Random Fields



Graph Representation Learning
• Graph Neural Networks

• Graph convolutional Networks (Kipf et al. 2016)
• Graph attention networks (Veličković et al. 2017)
• Neural message passing (Gilmer et al. 2017)

• Node Embedding and Knowledge Graph Embedding
• DeepWalk, LINE, TransE, RotatE (Sun et al. 2019)

• Pros:
• Learning effective node (and relation) representations
• High model capacity

• Cons
• Independent inference

RotatE
(Sun et al. 2019)

Graph convolutional Networks
(Kipf et al. 2016)
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Can we combine the two learning frameworks?



Semi-supervised Object Classification

• Given G= (V, E, 𝐱$)
• 𝑉 = 𝑉"⋃𝑉#: objects/nodes
• E : edges
• 𝐱$: object features

• Give some labeled objects 𝑉%, we want to infer the labels of the rest of 
objects 𝑉&
• Many other tasks on graphs can be formulated as object classification
• E.g., link classification

?

?

?

?

?

?

Object labels

Object features
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GMNN: Graph Markov Neural Networks
(Qu, Bengio, and Tang, ICML’19)
• Towards combining statistical relational learning and graph neural

networks
• Combining CRFs + GNNs

• Learning effective node representations for predicting the node labels
• Modeling the label dependencies of nodes
• State-of-the-art performance
• semi-supervised node classification
• unsupervised node representation
• link classification

Meng Qu, Yoshua Bengio, Jian Tang. “GMNN: Graph Markov Neural Networks”. In ICML’19.

26



GMNN: Graph Markov Neural Networks

• Model the joint distribution of object labels 𝐲' conditioned on object
attributes 𝐱' , i.e., p((𝐲'|𝐱'), with a conditional random field
• Learning the model parameters 𝜙 by maximizing the lower-bound of

log-likelihood of the observed data, log p((𝐲%|𝐱')

GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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Optimization with Pseudolikelihood
Variational-EM
• E-step: fix p( and update the variational distribution q)(𝐲&|𝐱') to

approximate the true posterior distribution p( 𝐲&|𝐲% , 𝐱' .
• M-step: fix q) and update p( to maximize the lower bound

• Directly optimize the joint likelihood is difficult due to the partition
function in p(, instead we optimize the pseudolikelihood function

GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate

GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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Inference/E-step: approximate p!(𝐲"|𝐲# , 𝐱$)

• Approximate it with variational distribution q) 𝐲&|𝐱' . Specifically
we use mean-field method:

• We parametrize each variational distribution with a Graph Neural
Network

GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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Learning/M-step:

• The log-pseudo likelihood:

• According to the inference, only the is required
• Parametrize with another GCN
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4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:
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log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
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n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate
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p�(yn|ŷNB(n),xV ). Then the value of p�(yn|ŷNB(n),xV )
is fixed as target, and we update ✓ to minimize the re-
verse KL divergence between q✓(yn|xV ) and the target
p�(yn|ŷNB(n),xV ), yielding the objective function below:

O✓,U =
X

n2U

Ep�(yn|ŷNB(n),xV )[log q✓(yn|xV )]. (11)

Besides, we notice that q✓ can be also trained by predicting
the labels for the labeled objects. Therefore, we also let q✓
maximize the following supervised objective function:

O✓,L =
X

n2L

log q✓(yn|xV ). (12)

Here, yn is the ground-truth label of n. By adding Eq. (11)
and (12), we obtain the overall objective for optimizing ✓:

O✓ = O✓,U +O✓,L. (13)

4.3. Learning

In the M-step, we seek to learn the parameter �. More specif-
ically, we will fix q✓ and further update p� to maximize
Eq. (5). With the objective function, we notice that only
the conditional distribution p�(yn|yNB(n),xV ) is required
for p� in both the inference and learning steps (Eq. (11)
and (5)). Therefore, instead of defining the joint distribu-
tion of object labels p�(yV |xV ) by specifying the potential
function, we can simply focus on modeling the conditional
distribution. Here, we parameterize the conditional distri-
bution p�(yn|yNB(n),xV ) with another non-linear graph
neural network model (GNN) because of its effectiveness:

p�(yn|yNB(n),xV ) = Cat(yn|softmax(W�h�,n)). (14)

Here, the distribution of yn is characterized by a softmax
classifier, which takes the object representation h�,n learned
by a GNN model as features, and we denote the GNN
as GNN�. When learning the object representation h�,n,
GNN� treats all the labels yNB(n) surrounding the object
n as features. Therefore, GNN� essentially models local
dependencies of object labels. With the above formulation,
we no longer require any hand-crafted feature functions.

The framework is related to the label propagation meth-
ods (Zhu et al., 2003; Zhou et al., 2004), which also update
each object label by combining the surrounding labels. How-
ever, these methods propagate labels in a fixed and linear
way, whereas GNN� is in a learnable and non-linear way.

One notable thing is that when defining p�(yn|yNB(n),xV ),
GNN� only uses the object labels yNB(n) surrounding the
object n as features, but GNN� is flexible to incorporate
other features. For example, we can follow existing SRL
methods, and take both the surrounding object labels yNB(n)
and surrounding attributes xNB(n) as features in GNN�. We
will discuss this variant in our experiment (see Sec. 6.4).

Algorithm 1 Optimization Algorithm

Input: A graph G, some labeled objects (L,yL).
Output: Object labels yU for unlabeled objects U .
Pre-train q✓ with yL according to Eq. (12).
while not converge do

� M-Step: Learning Procedure

Annotate unlabeled objects with q✓.
Denote the sampled labels as ŷU .
Set ŷV = (yL, ŷU ) and update p� with Eq. (15).
� E-Step: Inference Procedure

Annotate unlabeled objects with p� and ŷV .
Denote the predicted label distribution as p�(yU ).
Update q✓ with Eq. (11), (12) based on p�(yU ),yL.

end while

Classify each unlabeled object n based on q✓(yn|xV ).

Another thing is that based on the overall formulation of
p�, i.e., Eq. (1), each object label yn should only depend on
its adjacent object labels yNB(n) and object attributes xV ,
which implies GNN� should not have more than one mes-
sage passing layer. However, a common practice in the liter-
ature of graph neural networks is to use multiple message
passing layers during training, which can effectively model
the long-range dependency between the objects. Therefore,
we also explore using multiple message passing layers for
modeling the long-range dependency between object labels.

When optimizing p� to maximize Eq. (5), we estimate the
expectation in Eq. (5) by drawing a sample from q✓(yU |xV ).
More specifically, if n is an unlabeled object, then we
sample ŷn ⇠ q✓(yn|xV ), and otherwise we set ŷn as the
ground-truth label. Therefore, the parameter � can be op-
timized by maximizing the following objective function:

O� =
X

n2V

log p�(ŷn|ŷNB(n),xV ). (15)

4.4. Optimization

To optimize our approach, we first pre-train the inference
model q✓ with the labeled objects. Then we alternatively
optimize p� and q✓ until convergence. Afterwards, both
p� and q✓ can be employed to infer the labels of unlabeled
objects. In practice, we find that q✓ consistently outperforms
p�, and thus we use q✓ to infer object labels by default. We
summarize the detailed optimization algorithm in Alg. 1.

Fig. 1 presents an illustration of the framework. For the cen-
tral object, q✓ uses the attributes of its surrounding objects
to learn its representation, and further predicts the label. By
contrast, p� utilizes the labels of the surrounding objects
as features. If a neighbor is unlabeled, we simply use a
label sampled from q✓ instead. In the E-step, p� predicts the
label for the central object, which is then treated as target to
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Overall Optimization Procedure
• Two Graph Neural Networks Collaborate with each other
• 𝑝,: learning network, modeling the label dependency
• 𝑞-: inference network, learning the object representations

• 𝑞) infer the labels of unlabeled objects trained with supervision from
𝑝( and labeled objects
• 𝑝( is trained with a fully labeled graph, where the unlabeled objects

are labeled by 𝑞)

?

?

?

?

?

?

Object labels

Object features
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Reasoning on Knowledge Graphs

• A set of facts K𝐺 = {(ℎ, 𝑟, 𝑡)} represented as triplets
• (Bill_Gates, Co_Founder, Microsoft)

• A fundamental problem: predicting the missing facts by reasoning
with existing facts

friend?
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Probabilistic Logic Neural Networks for
Reasoning (Qu and Tang, NeurIPS’19. )
• Towards combining Markov Logic Networks and knowledge graph 

embedding
• Leverage logic rules and handling their uncertainty
• Effective and efficient inference

• Define the joint distribution of facts with Markov Logic Network
• Optimization with variational EM
• Parametrize the variational distribution with knowledge graph embedding

methods

Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning.” In NeurIPS’2019.
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pLogicNet

• Define the joint distribution of facts with an MLN

• Learning by maximizing the variational lower-bound of the log-
likelihood of observed facts

?
(Alan Turing, Nationality, UK)✓

✓
(Alan Turing, Born in, London)

(London, City of, UK)

✗
(Alan Turing, Politician of, UK)

✓
(Alan Turing, Live in, UK)

Born in ⋀ City of ⇒ Nationality 1.5

Nationality ⇐ Live in 0.2

Nationality ⇐ Politician of 2.6

Figure 1: Framework overview. Each possible triplet is associated with a binary indicator (circles),
indicating whether it is true (3) or not (7). The observed (yellow circles) and hidden (grey circles)
indicators are connected by a set of logic rules, with each rule having a weight (red number). For
the center triplet, the KGE model predicts its indicator through embeddings, while the logic rules
consider the Markov blanket of the triplet (all connected triplets). If any indicator in the Markov
blanket is hidden, we simply fill it with the prediction from the KGE model. In the E-step, we use the
logic rules to predict the center indicator, and treat it as extra training data for the KGE model. In the
M-step, we annotate all hidden indicators with the KGE model, and then update the weights of rules.

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that the triplet
(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update
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(h, r, t) is true, with f(·, ·, ·) being a scoring function on the entity and relation embeddings. For
example in TransE, the f can be formulated as �(� � ||xh + xr � xt||) according to [37], where � is
the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:
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where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
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the sigmoid function and � is a fixed bias. To learn the entity and relation embeddings, these methods
typically treat observed triplets as positive examples and the hidden triplets as negative ones. In other
words, they seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently
optimized with the stochastic gradient descent algorithm.

4 Model

In this section, we introduce our proposed approach pLogicNet for knowledge graph reasoning,
which combines the logic rule-based methods and the knowledge graph embedding methods. To
leverage the domain knowledge provided by first-order logic rules, pLogicNet formulates the joint
distribution of all triplets with a Markov logic network [32], which is trained with the variational
EM algorithm [24], alternating between a variational E-step and an M-step. In the varational E-step,
we employ a knowledge graph embedding model to infer the missing triplets, during which the
knowledge preserved by the logic rules can be effectively distilled into the learned embeddings. In
the M-step, the weights of the logic rules are updated based on both the observed triplets and those
inferred by the knowledge graph embedding model. In this way, the knowledge graph embedding
model provides extra supervision for weight learning. An overview of pLogicNet is given in Fig. 1.

4.1 Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic network [32] as

in Eq. (1) to model the joint distribution of both the observed and hidden triplets:

pw(vO,vH) =
1

Z
exp

 
X

l

wlnl(vO,vH)

!
, (3)

where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective is
infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likelihood function, which is given as follows:

log pw(vO) � L(q✓, pw) = Eq✓(vH)[log pw(vO,vH)� log q✓(vH)], (4)

where q✓(vH) is a variational distribution of the hidden variables vH . The equation holds when
q✓(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be effectively
optimized with the variational EM algorithm [24], which consists of a variational E-step and an
M-step. In the variational E-step, which is known as the inference procedure, we fix pw and update

4
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Graph Neural Networks for Bayesian Meta-
Learning (Qu et al. 2020)
• The prototype vectors of tasks v* are treated as random variables
• The prior of  v* are encoded with a GNN on the task graph, p y+ 𝐺 .
• The likelihood is defined on the support set, p(y,|x,, v*).
• Sample from the posterior p v+ x,, y,, 𝐺 with Langevin Dynamics
• Similar to MAML but can handle the uncertainty of v.
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Few-shot Relation Extraction via Bayesian Meta-learning on Task Graphs
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Figure 1. Framework overview. We consider a global task graph and few labeled sentences of each relation. Our approach aims at
modeling the posterior distribution of prototype vectors for different relations. The prior distribution in the posterior is parameterized by
applying a graph neural network to the global graph, and the likelihood is parameterized by using BERT to the labeled sentences. We use
stochastic gradient Langevin dynamics to draw multiple samples from the posterior for optimization, which is in an end-to-end fashion.

Under such a formalization, the key is how to parameterize
p(vT |xS ,yS ,G), which is the posterior distribution of pro-
totype vectors conditioned on the support sentences and the
global task graph. Next, we introduce how we parameterize
the posterior distribution in our proposed approach.

4.2. Parameterization of the Posterior Distribution

To model the posterior distribution of prototype vectors,
we notice that the posterior can be naturally factorized into
a prior distribution conditioned on the task graph, and a
likelihood function on the few support sentences. Therefore,
we can formally represent the posterior as follows:

p(vT |xS ,yS ,G) / p(yS |xS ,vT )p(vT |G), (4)

where p(vT |G) is the prior for the prototype vectors and
p(yS |xS ,vT ) is the likelihood on support sentences.

To effectively extract knowledge from the global task graph
to characterize the prior distribution, we introduce a graph
neural network (Kipf & Welling, 2017; Gilmer et al., 2017;
Veličković et al., 2018) in our approach. The graph neural
network is denoted as F , which can learn a latent repre-
sentation hr for each relation r, i.e., hr = F(G)r. More
specifically, the graph neural network F initializes the latent
embedding hr of each relation as its initial feature vector.
Then F iteratively updates the latent embedding of each re-
lation r according to the embeddings of r and r’s neighbors.
Formally, F updates the embeddings as follows:

hr  U

0

@
X

r02NB(r)

M(hr0),hr

1

A , (5)

where NB(r) is the neighbor of r in the global graph, and
M is a transformation function. Basically, for each relation
r, we apply M to the latent embeddings of r’s neighbors
and then aggregate the transformed embeddings together.
Finally, the latent embedding of r is updated based on its
previous value and the aggregated embeddings through an

update function U . After several rounds of such update, the
relationships between different tasks encoded in the global
graph can be effectively preserved into the final relation
embeddings, which can serve as guidance for the prototype
vectors of relations. Motivated by that, we parameterize the
prior distribution of prototype vectors p(vT |G) as follows:

p(vT |G) =
Y

r2T
p(vr|hr) =

Y

r2T
N (vr|hr, I), (6)

where we model the prior distribution of each relation r 2 T
independently. For each relation, we define its prior as a
Gaussian distribution, where the mean is set as the latent rep-
resentation hr given by the graph neural network F . In this
way, the knowledge from the graph can be effectively dis-
tilled into the prior distribution, which allows our approach
to better generalize to a wide range of relations.

Besides the graph-based prior, we also consider the likeli-
hood on support sentences when parameterizing the poste-
rior distribution of prototype vectors. Similar to the likeli-
hood on the query sentences in Eq. (3), the likelihood on
support sentences can be characterized as below:

p(yS |xS ,vT ) =
Y

s2S

p(ys|xs,vT ), with each

p(ys = r|xs,vT ) =
exp(E(xs) · vr)P

r02T exp(E(xs) · vr0)
,

(7)

where E is a sentence encoder. By applying the likelihood
on support sets to the prior distribution of prototype vectors,
we can effectively adapt the prior distribution to the target
relations with the few support sentences. In this way, the
posterior distribution combines the knowledge from both
the global task graph and the support sentences, which can
thus be used to effectively classify query sentences.

4.3. Optimization and Prediction

In the above section, we have introduced how we parame-
terize the posterior distribution of prototype vectors. Next,
we explain the model optimization and prediction.
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Graph Neural Networks with Neural
ODEs (Xhonneux and Qu et al. 2020)
• Graph Neural Networks: discrete dynamics of node representations

with graph convolutional layers
• Can we generalize it to continuous dynamics?

• Model the dynamics of node representations with Neural ODEs
• Inspired by epidemiological models, dynamic of node representations
• Depending on the infection from neighbors: AH(t)
• Nature recovery: -H(t)
• Initial condition: E

Continuous Graph Neural Networks

Figure 1: Architecture overview: The input to the model is a graph with node features, we initially encode these node
features using a single neural network layer and ignoring the graph structure. Then we use a differential equation to change
the representation over time, before projecting the representation using another single neural network layer and a softmax
function to a one-hot encoding of the classes. The red lines represent the information transfer as defined by the ODE.

approximate it using the first order of the Taylor expansion,
i.e. lnA ⇡ (A� I), which gives us:

dH(t)

dt
= (A� I)H(t) +E, (6)

with the initial value being H(0) = E. The intuition be-
hind the ODE defined in Eq. 6 can be understood from an
epidemic modelling perspective. The epidemic model aims
at studying the dynamics of infection in a population. Typ-
ically, the model assumes that the infection of people is
affected by three factors, i.e. the infection from neighbours,
the natural recovery, and the natural physique of people.
Suppose that we treat the latent vectors H(t) as the infec-
tion conditions of a group of people at time t, then the three
factors can be naturally captured by three terms: AH(t) for
the infection from neighbours, �H(t) for natural recovery,
and E for the natural physique. Therefore, the infection
dynamics in a population can be intuitively modelled by our
first-order ODE, in Eq. (5), indicating that the intuition of
our ODE agrees with the epidemic model.

The ODE we use can be understood theoretically. Specifi-
cally, the node representation matrix H(t) at time t has an
analytical form, which is formally stated in the following
proposition.

Proposition 2 The analytical solution of the ODE defined

in Eq. (6) is given by:

H(t) = (A� I)�1(e(A�I)t � I)E + e(A�I)t
E (7)

We prove the proposition in the Supplementary material.
From the proposition, since the eigenvalues of A� I are in
the interval [�1, 0), as we increase t to 1, the exponential
term e(A�I)t will approach 0, i.e. limt!1 e(A�I)t = 0.

Therefore, for large enough t we can approximate H(t) as:

H(t) ⇡ (I �A)�1
E =

 1X

i=0

A
i

!
E. (8)

Thus, H(t) can be seen as the summation of all different
orders of propagated information (i.e. {Ai

E}1i=1). In this
way, our approach essentially has an infinite number of
discrete propagation layers, allowing us to model global
dependencies of nodes more effectively than existing GNNs.

Implementation. In the node classification task, our de-
coder D to compute the node-label matrix Y = D(H(t1))
is a softmax classifier with the ReLU activation function
(Nair and Hinton, 2010).

Note the parameter ↵ in Eq. (2) decides the eigenvalues of
A, which thereby determines how quickly the higher order
powers of A go to 0, this also means that by specifying ↵
per node we can control how much of the neighbourhood
each node gets to see as smaller values ↵ imply that the
powers of A vanish faster. In our final model we learn these
parameters ↵.

Finally, to help stabilise training we use the idea from
(Dupont et al., 2019) and add auxiliary dimensions to hid-
den representation only during the continuous propagation
process. Specifically, we double the latent representation
initialising the second half of the initial representation with
0 and throwing the result away after solving the continuous
ODE. This very slightly improves results, but importantly
stabilises training significantly.

Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang. Continuous Graph Neural Networks. arXiv:1912.00967



Outline

• Unsupervised Graph Representation Learning
• Relational Reasoning with Graph Representation Learning
• Graph Representation Learning for Drug Discovery



The Process of Drug Discovery
• A very long and costly process
• On average takes more than 10 years and $2.5B to get a drug approved

• Big opportunities for AI to accelerate this process

Lead Discovery
2 years

Lead Optimization
3 years

Preclinical
Study

2 years

Clinical 
TrialTarget

Screen millions of 
functional molecules;
Found by serendipity: 
Penicillin

Modify the molecule 
to improve specific 
properties. 
e.g. toxicity, SA

In-vitro and 
in-vivo 
experiments;
synthesis

Multiple Phases



Medical Knowledge Graph Construction
• >7M Entities, ~300M facts
• Disease
• Drug
• Phenotype
• Gene
• Protein
• Side effect

• Biomedical literature

DrugBank
Comparative Toxicogenomics

Database 

STITCH

http://stitch.embl.de/cgi/input.pl%3FUserId=I1jqxFrUtIjl&sessionId=ymD4LkudOtr9


Medical Knowledge Graph Representation
Representation and Applications
• Each entity is a represented as a vector
• Disease, Drug, Phenotype, Gene, Protein, Side effect

• Applications
• Drug repurposing
• Drug side effect prediction



Drug Repurposing with Medical 
Knowledge Graph for COVID-19
• Predict the disease-drug relationships on the medical knowledge graph
• Diseases, proteins, drugs
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Drug-Drug Adverse Effect Prediction
(Deac et al. 2019)
• Predicting the side effects of two drugs
• Based on medical knowledge graph
• Based on molecular graph structures

• Marinka Zitnik, Monica Agrawal, Jure Leskovec. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018. 
• Andreea Deac, Yu-Hsiang Huang, Petar Veličković, Pietro Liò, Jian Tang. Drug-Drug Adverse Effect Prediction with Graph Co-Attention.

arXiv:1905.00534

Andreea Deac, Yu-Hsiang Huang, Petar Veličković, Pietro Liò, Jian Tang

Drug 1 Drug 2

DDI predictor (multi-label)

Bradycardia?Inflammation?Tachycardia? . . . Gastrointestinal bleed?

Figure 1: An overview of the binary (le�) and multi-label (right) drug-drug interaction (DDI) task. In both cases,
two drugs (represented as their molecular structures) are provided to the model in order to predict existence or
absence of adverse interactions. For binary classi�cation, the DDI predictor is also given a particular side e�ect
as input, and is required to speci�cally predict existence or absence of it. For multi-label classi�cation, the DDI
predictor simultaneously predicts existence or absence of all side-e�ects under consideration.

matrix factorization were used to combine di�erent types of simi-
larities by learning latent representations [7, 43].

However, all these methods are limited to either providing the
likelihood of a DDI (but not its type if one exists), or lack applica-
bility in inductive settings. Decagon [46] and the Multitask Dyadic
Prediction in [21] are two methods which overcome these chal-
lenges, and are thus going to be used as baselines against which our
work will be compared. Multitask Dyadic Prediction is a proximal
gradient method which uses substructure �ngerprints to construct
the drug feature representations. Similarly to our work, it has access
only to the chemical structure of the drug.

Decagon, on the other hand, improves predictive power further by
including additional relational information with protein targets of
interest. Speci�cally, Decagon leverages this information by apply-
ing a graph convolutional neural network architecture over a graph
corresponding to the interactions between pairs of drugs, pairs of
proteins and drug-protein pairs, treating discovery of novel DDIs
as a link prediction task in the graph. While the protein-related
auxiliary information is highly bene�cial for the algorithm to use,
it could also be expensive to obtain.

Compared to previous methods, our contribution is a model which
learns a robust representation of drugs by leveraging joint infor-
mation early on in the learning process. This allows it to bring an
improvement in terms of predictive power, while maintaining an
inductive setup where the model indicates the types of the possible
side e�ects by just looking at chemical structure of the drugs.

Ourmodel builds up on a large existing body of work in graph convo-
lutional networks [6, 11, 14, 23, 41], that have substantially advanced
the state-of-the-art in many tasks requiring graph-structured input
processing (such as the chemical representation [9, 14, 45] of the
drugs leveraged here). Furthermore, we build up on work propos-
ing co-attention [10, 27] as a mechanism to allow for individual
set-structured datasets (such as nodes in multimodal graphs) to in-
teract. Overall, these (and related) techniques correspond to one of

the latest major challenges of machine learning [4, 5, 18], with trans-
formative potential across a wide spectrum of potential applications
(not only limited to the biochemical domain).

3 ARCHITECTURE
In this section, we will present the main building blocks used within
our architecture for drug-drug interaction prediction. This will span
a discussion of the way the input to the model is encoded, followed
by an overview of the individual computational steps of the model.
Lastly, we will specify the loss functions optimised by the models.

3.1 Inputs
The drugs, dx , are represented as graphs consisting of atoms, a(dx )i
as nodes, and bonds between those atoms

⇣
a(dx )i ,a(dx )j

⌘
as edges.

For each atom, the following input features are recorded: the atom
number, the number of hydrogen atoms attached to this atom, and
the atomic charge. For each bond, a discrete bond type (e.g. single,
double etc.) is encoded as a learnable input edge vector, e(dx )i j . The
side e�ects, sez , are one-hot encoded from a set of 964 side e�ects.

The input to our model varies depending on whether we are per-
forming binary classi�cation for a given side e�ect, or multi-label
classi�cation for all side e�ects at once:

• For binary classi�cation (Figure 1 (Left)), the input to our
model is a triplet of two drugs and a side e�ect (dx ,d� , sez ),
requiring a binary decision on whether drugs x and � ad-
versely interact to cause side e�ect z.

• For multi-label classi�cation (Figure 1 (Right)), the input
to our model is a pair of two drugs (dx ,d� ), requiring 964
simultaneous binary decisions on whether drugs x and �
adversely interact to cause each of the considered side e�ects.
Note that, in terms of learning pressure, this model requires
more robust joint representations of pairs of drugs—as they
need to be useful for all side-e�ect predictions at once.

In both cases, the model returns a score associated with the likeli-
hood of a particular side e�ect occurring (higher scores implying

Molecular graph structures (Deac et al., 2019)

Tatonetti et al., 2012), a major consequence of polypharmacy to a

patient is a much higher risk of side effects which are due to drug–

drug interactions. Polypharmacy side effects are difficult to identify

manually because they are rare, it is practically impossible to test all

possible pairs of drugs, and side effects are usually not observed in

relatively small clinical testing (Bansal et al., 2014; Tatonetti et al.,

2012). Furthermore, polypharmacy is recognized as an increasingly

serious problem in the health care system affecting nearly 15% of

the U.S. population (Kantor et al., 2015), and costing >$177 billion

a year in the U.S. in treating polypharmacy side effects (Ernst and

Grizzle, 2001).

In vitro experiments and clinical trials can be performed to iden-

tify drug–drug interactions (Li et al., 2016; Ryall and Tan, 2015),

but systematic combinatorial screening of drug–drug interaction

candidates remains challenging and expensive (Bansal et al., 2014).

Researchers have thus attempted to collect drug–drug interactions

from scientific literature and electronic medical records (Percha

et al., 2012; Vilar et al., 2017), and also discovered them through

network modeling, analysis of molecular target signatures (Chen

et al., 2016a; Huang et al., 2014b; Lewis et al., 2015; Sun et al.,

2015; Takeda et al., 2017), statistical association-based models and

semi-supervised learning (Chen et al., 2016b; Huang et al., 2014a;

Shi et al., 2017; Zhao et al., 2011) (see related work in Section 7).

While these approaches can be useful to derive broad rules for

describing drug interaction at the cellular level, they cannot directly

guide strategies for drug combination treatments. In particular,

these approaches characterize drug–drug interactions through scores

representing the overall probability/strength of an interaction but

cannot predict the exact type of the side effect. More precisely, for

drugs i and j these methods predict if their combination produces

any exaggerated response Sij over and beyond the additive response

expected under no interaction, regardless of the exact type or

the number of side effects. That is, their goal is to answer a question:

Sij 6¼
?
fg, where Sij is the set of all polypharmacy side effects attributed

specifically to a drug pair i, j but not to either drug alone. However,

it is much more important and useful to answer whether a pair of

drugs i, j will interact with a given side effect of type r, r2
?
Sij. Even

though identification of precise polypharmacy side effects is critical

for improved patient care, it remains a challenging task that has not

yet been studied through predictive modeling.

1.1 Present study
Here, we develop Decagon, a method for predicting side effects of

drug pairs. We model the problem by constructing a large two-layer

multimodal graph of protein–protein interactions, drug–protein inter-

actions and drug–drug interactions (i.e. side effects; Fig. 1). Each

drug–drug interaction is labeled by a different edge type, which

signifies the type of the side effect. We then develop a new multirela-

tional edge prediction model that uses the multimodal graph to pre-

dict drug–drug interactions as well as their types. Our model is a

convolutional graph neural network that operates in a multirelational

setting.

To motivate our model, we first perform exploratory analysis

leading to two important observations (Section 3). First, we find

that co-prescribed drugs (i.e. drug combinations) tend to have more

target proteins in common than random drug pairs, suggesting that

drug-target protein information contains valuable information for

drug combination modeling. Second, we find that it is important to

consider a map of protein–protein interactions in order to be able to

model characteristics of drugs with common side effects. These

observations motivate the development of Decagon to make

predictions about which drug pairs will interact and what will the

exact type of the interaction/side effect be (Section 4).

Decagon develops a new graph auto-encoder approach

(Hamilton et al., 2017a), which allows us to develop an end-to-end

trainable model for link prediction on a multimodal graph. In con-

trast, previous graph-based approaches for link prediction tasks in

biology (e.g. Chen et al. 2016b; Huang et al. 2014b; Zong et al.

2017) employ a two-stage pipeline, typically consisting of a graph

feature extraction model and a link prediction model, both of which

are trained separately. Furthermore, the crucial distinguishing char-

acteristic of Decagon is the multirelational link prediction ability

allowing us to capture the interdependence of different edge (side ef-

fect) types, and to identify which out of all possible edge types exist

between any two drug nodes in the graph. This is in sharp contrast

with approaches for simple link prediction (Trouillon et al., 2016),

which predict only existence of edges between node pairs, and is

also critical for modeling a large number of different edge/side

effect types.

We contrast Decagon’s performance with that of state-of-the-art

approaches for multirelational tensor factorization (Nickel et al.,

2011; Papalexakis et al., 2017), approaches for representation learn-

ing on graphs (Perozzi et al., 2014; Zong et al., 2017) and estab-

lished machine learning methods for link prediction, which we

adapted for the polypharmacy side effect prediction task. Decagon

outperforms alternative approaches by up to 69% and leads to a

20% average gain in predictive performance, with larger gains

achieved on side effect types that have a strong molecular basis

(Section 6). For several novel predictions we find supporting evi-

dence in the biomedical literature, suggesting that Decagon per-

forms especially well at identifying predictions that are highly likely

Drug Protein
r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interaction

Polypharmacy 
side effects

Ciprofloxacin

SimvastatinDoxycycline

Mupirocin

r2r2

r1

Node feature vector

D S

MC

Fig. 1. An example graph of polypharmacy side effects derived from genomic

and patient population data. A multimodal graph consists of protein–protein inter-

actions, drug–protein targets and drug–drug interactions encoded by 964 different

polypharmacy side effects (i.e. edge types ri, i ¼ 1; . . . ; 964). Side information is

integrated into the model in the form of additional protein and drug feature vec-

tors. Highlighted network neighbors of Ciprofloxacin (node C) indicate this drug

targets four proteins and interacts with three other drugs. The graph encodes in-

formation that Ciprofloxacin (node C) taken together with Doxycycline (node D) or

with Simvastatin (node S) increases the risk of bradycardia side effect (side effect

type r2), and its combination with Mupirocin (M) increases the risk of gastrointes-

tinal bleed side effect r1. We use the graph representation to develop Decagon, a

graph convolutional neural model of polypharmacy side effects. Decagon predicts

associations between pairs of drugs and side effects (shown in red) with the goal

of identifying side effects, which cannot be attributed to either individual drug in

the pair
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Molecule Properties Prediction
• Predicting the properties of molecules is very important in many 

stages of drug discovery
• Virtual screening

• Represent the whole molecule (graph) as a feature vector



Unsupervised and Semi-supervised Learning 
for Molecular Graph Representation (Sun et al.
ICLR 20)
• Most existing work on molecular representation are based on 

supervised learning with graph neural networks
• Require a large number of labeled data

• However, the number of labeled data is very limited
• Leverage the unlabeled data!!

Figure 2: Illustration of the semi-supervised version of InfoGraph (InfoGraph*). There are two separate encoders with
the same architecture, one for the supervised task and the other trained using both labeled and unlabeled data with an
unsupervised objective (eq. (4)). We encourage the mutual information of the two representations learned by the two
encoders to be high by deploying a discriminator that takes a pair of representation as input and determines whether
they are from the same input graph.

where h
i
� is the summarized patch representation centered at node i and H�(G) is the global representation after

applying READOUT. Note that here we slightly abuse the notation of h.

We define our mutual information (MI) estimator on global/local pairs, maximizing the estimated MI over the given
dataset G := {Gj 2 G}Nj=1:

�̂,  ̂ = argmax
�, 

X

G2G

1

|G|
X

u2G

I�, (
~h
u
�;H�(G)). (4)

I�, is the mutual information estimator modeled by discriminator T and parameterized by a neural network with
parameters  . We use the Jensen-Shannon MI estimator (following the formulation of [41]),

I�, (h
i
�(G);H�(G)) :=

EP[�sp(�T�, (
~h
i
�(x), H�(x)))]� EP⇥P̃[sp(T�, (~hi

�(x
0
), G�(x)))] (5)

where x is an input sample, x0 (negative sample) is an input sampled from P̃ = P, a distribution identical to the
empirical probability distribution of the input space, and sp(z) = log(1 + e

z
) is the softplus function. In practice, we

generate negative samples using all possible combinations of global and local patch representations across all graph
instances in a batch.

Since H�(G) is encouraged to have high MI with patches that contain information at all scales, this favours encoding
aspects of the data that are shared across patches and aspects that are shared across scales. The algorithm is illustrated
in Fig. 1.

It should be noted that our model is similar to Deep Graph Infomax (DGI) [55], a model proposed for learning
unsupervised node embeddings. However, there are important design differences due to the different problems that we
are focusing on. First, in DGI they use random sampling to obtain negative samples due to the fact that they are mainly
focusing on learning node embeddings on a graph. However, contrastive methods require a large number of negative
samples to be competitive [17], thus the use of batch-wise generation of negative samples is crucial as we are trying to
learn graph embeddings given many graph instances.Second, the choice of graph convolution encoders is also crucial.
We use GIN [60] while DGI uses GCN [26] as GIN provides a better inductive bias for graph level applications. Graph
neural network designs should be considered carefully so that graph representations can be discriminative towards
other graph instances. For example, we use sum over mean for READOUT and that can provide important information
regarding the size of the graph.

5

Supervised Methods (Gilmer et al. 17) Unsupervised and semi-supervised methods (Sun et al. 19)

Gilmer et al. Neural Message Passing for Quantum Chemistry. ICML’17.
Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning 
via Mutual Information Maximization. ICLR’20



Application: Finding Effective Antibiotics 
for Secondary Infections in COVID-19
• A high proportion of non-surviving patients of COVID-19 developed a 

secondary infection (Zhou et al. 2020)
• Finding effective antibiotics 
• Predict antibacterial properties 
• Collaboration with MIT
• https://www.aicures.mit.edu/tasks

https://www.aicures.mit.edu/tasks


De Novo Molecule Design and Optimization

• Deep generative models for data generation

Text generated by by GPT-2,
Examples from Internet

Image generation
(by StyleGAN, From Internet) Graphs?

Under review as a conference paper at ICLR 2020
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GraphAF: a Flow-based Autoregressive Model
for Molecular Graph Generation
(Shi & Xu et al. ICLR’20)
• Formulate graph generation as a sequential decision process
• In each step, generate a new atom
• Determine the bonds between the new atoms and existing atoms

Under review as a conference paper at ICLR 2020
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(b) Autoregressive Flow

Figure 1: Overview of the proposed GraphAF model. Superscripts of ✏Xi , ✏
A
ij , z

X
i , z

A
ij is are omitted

for simplicity. (a) Illustration of the phases of the generative procedure. Newly generated node/edge
is marked in red. We begin with a virtual graph where there is no items. Then we alternately use
NodeMLP and EdgeMLP to convert the node embeddings from R-GCN to parameters of affine trans-
formation, and map the random sampled vector to predicted atom/bond types. (b) Another diagram
of GraphAF from the perspective of autoregressive flow. Current state corresponds to highlighted
the step in figure 1(a).

X
⇡
i = argmax(zXi ) = argmax(✏Xi � ↵

X
i + µ

X
i ), where ✏

X
i 2 Rd and ✏

X
i ⇠ N (0, 1)

Ã
⇡
ij = argmax(zAij) = argmax(✏Aij � ↵

A
ij + µ

A
ij), where ✏

A
ij 2 Rb and ✏

A
ij ⇠ N (0, 1)

(7)

where � denotes the element-wise multiplication. ✏
X
i and ✏

A
ij are random vectors that GraphAF

uses internally to generate node and edge, which are typically i.i.d. drawn from a multi-dimensional
standard Gaussian.

Valency Check During Sampling. However, as mentioned above, in GraphAF the conditional dis-
tributions of edge types are modeled by an invertible normalizing flow, i.e., all edge types in the
chemical space are mapped into the latent space. Therefore, any graph including invalid molecule
can still be generated even the model is trained well for modeling the datasets. Thanks to the sequen-
tial generation manner of GraphAF, we can explicitly apply a valency constraint during sampling
to check whether current bonds have exceeded the allowed valency, which has also been adopted in
previous models (You et al., 2018a; Popova et al., 2019). Let |A⇡

ij | denote the order of the bond A
⇡
ij ,

then in each step when sampling the latent ✏Aij and get the edge A⇡
ij by Eq. 7, we check the following

valency constraint for the i
th and j

th atoms:

X

j

|A⇡
ij |+ k  Valency(X⇡

i ) and
X

i

|A⇡
ij |+ k  Valency(X⇡

j ) (8)

If the newly added bond break the valency constraint, we just reject the variable ✏
A
ij , sample another

in the latent space and invert it to band feature. Finally, the generation process will end once one of
the following conditions if satisfied: 1) the graph size reach the pre-sampled max-size n; 2) there
is no bond linked between the newly generated atom and previous sub-graph. After this, hydrogens
will be added to the atoms that have not filled up their valencies.

4.3 EFFICIENT PARALLEL TRAINING

As defined in 7, the sampling process maps the latent space (✏A, ✏X) to continuous feature (zA, zX),
and then further to molecular space (A,X) via argmax. In this process, GraphAF can be seen as
a transformation f : (✏A, ✏X) ! (zA, zX), where (✏A, ✏X) are sampled from N (0, 1). Since

5

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang. GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. ICLR’20



Molecule Generation
Under review as a conference paper at ICLR 2020

Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
† is obtained by running GCPN’s open-source code. Results with ‡ are taken from Popova et al. (2019).

Method Validity Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%‡ 100%‡ 76.7%
GCPN 100% 20%† 99.97%‡ 100%‡ —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%
GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC (Dataset) 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN (You et al., 2018a) 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MRNN1 (Popova et al., 2019) 8.63 6.08 4.73 100.0% 0.844 0.796 0.736 100.0%

GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al., 2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Ba, 2014) to optimize our model. Full training details can be found in Appendix C.

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table 2 shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table 2, JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al., 2018a) to make results comparable. To perform this task,

1The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al., 2019) using GCPN’s script.

7



Under review as a conference paper at ICLR 2020

O

NH

F

N

NH

Cl

SH
NH

O

OH

Cl

NH

N

N

N

O

N

N

O

O

NH

N

H2N

S

Cl

NH

N

N

HO N

O

HO

Cl

Cl

S

NH

Br
N

H2N

O

N

Br

Br

N

S

O

O

F

NH2

O
Cl

O

Br

O

N

N
O

F

O

N
N

O

O

HO
NH

O

Cl

H2N
NH

O

O

I

I

N

S

O

OH

I

N

NH

N

NO
NH NH

N

O

NH2

N

O

NH

O

NH
N

F

Cl

N

O
N

Cl

Br

Cl

Cl

H2N

NH

S N O

NO

NH

Br

N

O

S

NH

O

N

N
Cl

NH2

N

NNHCl

N

O

NH
N

N

O

HO

NHO

H2N

O
N O

O

Br

F

F

F

Cl

O

NH

S

O

O
N

OH NH F

S

NH

N

O

N

S
S

NH
O

NH

O

NH

NH

NH2

O

N

N
NHN

O

NH2

NH
O

N

NH

F

N

N

OH

NS

O

O

N

Cl

N

Cl

O

NH

NH

NH

O

O

NN
N

I

Cl

N

NH2

S

Figure 3: 50 molecules sampled from prior.

14



Molecule Optimization

• Properties
• Penalized logP
• QED (druglikeness)

Under review as a conference paper at ICLR 2020

ure 2(a) and 2(b) show some best molecules found by the model and we present more samples with
peanalized logP ranging from 5 to 10 in appendix 3
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Figure 2: Molecule samples generated in property optimization and constrained optimization tasks.
(a) Molecule with high penalized logP scores. (b) Molecule with high QED scores. (c) Two pairs of
molecules in constrained optimization with similarity 0.88(top) and 0.65(bottom)

Constrained Optimization. The goal of this task is to modify the given molecule to improve
specified property under similarity constraint. Following (Jin et al., 2018; You et al., 2018a), we
choose to optimize penalized logP for 800 molecules in ZINC250k with lowest scores and we adopt
the same similarity constraint as they do in this task.

For this task, we first sort all the molecules in ZINC250k in descending order according to penal-
ized logP score and calculate two average latent zpos, zneg using first, second half of the molecules
respectively. Then we treat the difference (zpos � zneg) as the direction for latent manipulation.
More specifically, given a molecule to optimize, we first encode the molecule into latent vector,
shift the latent vector towards the pre-calculated direction and finally inverse the latent back to the
molecule. Thanks to the invertibility and latent-smoothness of flow-based models, hopefully we can
get optimized molecules while satisfying similarity constraint. Empirically, we find that only mod-
ifying the last few dimensions of the latent vector under a specific BFS order will yield molecules
with high simlarity and improvement. Compared to other constrained optimization algorithm, this
method doesn’t require training a new policy network or learning a score estimator and thus is easy
to use and implement. Note that this method has been previously used in modifying attributes of
images (Kingma & Dhariwal, 2018) and has achieved great success. We optimize each molecule
for 200 times and report the success rate as well as the mean and standard deviation of improve-
ment and similarity between original and improved molecules among successful cases in table 4.
Our method significantly outperforms the GCPN with 295% higher penalized logP improvement on
average and achieves reasonable success rate by simply manipulating the latent vector without learn-
ing. Figure 2(c) visualizes two optimization results, indicating that our method is able to improve
the penalized logP score significantly while maintaining high similarity between molecule pairs.

6 CONCLUSION

9
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Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
† is obtained by running GCPN’s open-source code. Results with ‡ are taken from Popova et al. (2019).

Method Validity Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%‡ 100%‡ 76.7%
GCPN 100% 20%† 99.97%‡ 100%‡ —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%
GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC (Dataset) 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

JT-VAE (Jin et al., 2018) 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN (You et al., 2018a) 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MRNN1 (Popova et al., 2019) 8.63 6.08 4.73 100.0% 0.844 0.796 0.736 100.0%

GraphAF 12.23 11.29 11.05 100.0% 0.948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al., 2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Ba, 2014) to optimize our model. Full training details can be found in Appendix C.

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table 2 shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table 2, JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al., 2018a) to make results comparable. To perform this task,

1The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al., 2019) using GCPN’s script.
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Constrained Optimization

Under review as a conference paper at ICLR 2020

ure 2(a) and 2(b) show some best molecules found by the model and we present more samples with
peanalized logP ranging from 5 to 10 in appendix 3
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Figure 2: Molecule samples generated in property optimization and constrained optimization tasks.
(a) Molecule with high penalized logP scores. (b) Molecule with high QED scores. (c) Two pairs of
molecules in constrained optimization with similarity 0.88(top) and 0.65(bottom)

Constrained Optimization. The goal of this task is to modify the given molecule to improve
specified property under similarity constraint. Following (Jin et al., 2018; You et al., 2018a), we
choose to optimize penalized logP for 800 molecules in ZINC250k with lowest scores and we adopt
the same similarity constraint as they do in this task.

For this task, we first sort all the molecules in ZINC250k in descending order according to penal-
ized logP score and calculate two average latent zpos, zneg using first, second half of the molecules
respectively. Then we treat the difference (zpos � zneg) as the direction for latent manipulation.
More specifically, given a molecule to optimize, we first encode the molecule into latent vector,
shift the latent vector towards the pre-calculated direction and finally inverse the latent back to the
molecule. Thanks to the invertibility and latent-smoothness of flow-based models, hopefully we can
get optimized molecules while satisfying similarity constraint. Empirically, we find that only mod-
ifying the last few dimensions of the latent vector under a specific BFS order will yield molecules
with high simlarity and improvement. Compared to other constrained optimization algorithm, this
method doesn’t require training a new policy network or learning a score estimator and thus is easy
to use and implement. Note that this method has been previously used in modifying attributes of
images (Kingma & Dhariwal, 2018) and has achieved great success. We optimize each molecule
for 200 times and report the success rate as well as the mean and standard deviation of improve-
ment and similarity between original and improved molecules among successful cases in table 4.
Our method significantly outperforms the GCPN with 295% higher penalized logP improvement on
average and achieves reasonable success rate by simply manipulating the latent vector without learn-
ing. Figure 2(c) visualizes two optimization results, indicating that our method is able to improve
the penalized logP score significantly while maintaining high similarity between molecule pairs.

6 CONCLUSION
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Retrosynthesis Prediction

• Once a molecular structure is designed, how to synthesize it?
• Retrosynthesis planning/prediction
• Identify a set of reactants to synthesize a target molecule
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A Graph to Graphs Framework for 
Retrosynthesis Prediction (Shi et al. 2020)
• Each molecule is represented as a molecular graph
• Formulate the problem as a graph (product molecule) to a set of graphs 

(reactants)
• The whole framework are divided into two stages
• Reaction center identification
• Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
In Submission, 2020.



The G2Gs Framework (Shi et al. 2020)
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Experiments
• Experiment Setup

• Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

• Evaluation metrics: top-𝑘 exact match (based on canonical SMILES) accuracy



Take Away

• Graph representation learning
• A growing research topic in machine learning focusing on deep learning for

graph-structured data

• Graph Representation learning for relational/logical reasoning
• Graph as bridges between system I and II reasoning

• Graph representation learning for drug discovery
• Many data in this domain are graph-structured, e.g., molecules and medical

knowledge graph
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