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High-Dimensional Quantile Regression:
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Abstract—In this paper, we focus on distributed estimation and
inference for high-dimensional sparse linear quantile regression.
Quantile regression is a popular alternative tool to the least
squares regression for robustness against outliers and data
heterogeneity. However, the non-smoothness of the check loss
function poses big challenges to both computation and theory in
the distributed setting. To tackle these problems, we transform
the original quantile regression into a least-squares optimization.
By applying a double-smoothing approach, we extend a pre-
vious Newton-type distributed approach without the restrictive
independent assumption between the error term and covariates.
An efficient algorithm is developed, which enjoys high computa-
tion and communication efficiency. Theoretically, the proposed
distributed estimator achieves a near-oracle convergence rate
and high support recovery accuracy after a constant number
of iterations. Furthermore, we employ a novel communication-
efficient debiasing technique based on the distributed estimator
to conduct statistical inference, including hypothesis testing and
interval estimation. Non-asymptotic Berry-Esseen bounds and
asymptotic normality of the debiased estimator are provided
to ensure the validity of the inference. Extensive experiments
on synthetic examples and a real data application further
demonstrate the effectiveness of the proposed method.

Index Terms—Distributed estimation, distributed inference,
high-dimensional quantile regression, data heterogeneity, double-
smoothing, debiased method.

I. INTRODUCTION

W ITH the development of modern technology, the prolif-
eration of massive data has garnered significant atten-

tion from researchers and practitioners [1], [2]. For example,
financial institutions leverage big data to scrutinize customer
preferences and fine-tune their marketing approaches, while
manufacturers and transportation departments lean heavily on
extensive datasets to streamline supply chain management and
enhance delivery route optimization. However, these large-
scale datasets are usually distributed across different machines
due to storage and privacy concerns, making the direct appli-
cation of existing statistical methods infeasible. On the other
hand, another challenge arises from the high dimensionality
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of modern data. In the literature, a sparse assumption is
often adopted [3]–[5], and support recovery is an essential
problem for high-dimensional analysis. Despite its importance
in practice, the support recovery in a distributed system is un-
derexplored in theory, compared to the well-studied statistical
estimation of the interested parameters [6]–[8].

Since the seminar work of [9], quantile regression has
gained increasing attention across various fields, including
economics, biomedicine, and environmental studies. Com-
pared to the least squares regression that only estimates
the conditional means, quantile regression models the entire
conditional quantiles of the response, making it more robust
against outliers in the response measurements [10], [11].
Although quantile regression can better handle data hetero-
geneity, computational challenges arise when both sample size
and dimension are large due to the non-smooth check loss
function [12], [13]. Consequently, it is natural to consider
a distributed estimation procedure to address the scalability
concerns.

In this paper, we focus on distributed estimation and in-
ference for high-dimensional sparse linear quantile regression,
where the number of covariates p can be much larger than the
sample size N and the true parameter β∗ is sparse. We aim to
bridge the theoretical and practical gap by addressing several
fundamental questions regarding distributed high-dimensional
linear quantile regression. Firstly, what is the statistical limit
of estimation in the presence of distributed data? And how
does this limit depend on the number of local machines in the
distributed system? Secondly, can distributed high-dimensional
sparse linear quantile regression achieve the same convergence
rate of the parameters and support recovery rate as those in a
single machine setting? Thirdly, how can the high-dimensional
inference problem be addressed for distributed data with high
communication efficiency? Finally, can the proposed method
be applied to various practical settings, such as homoscedastic
and heteroscedastic data structures?

We address the aforementioned theoretical and practical
questions by designing some distributed high-dimensional
sparse linear quantile regression algorithms via a double-
smoothing transformation and debiasing technique. To our
limited knowledge, our work is one of the pioneering works in
studying distributed high-dimensional sparse linear quantile re-
gression with the least practical constraint and solid theoretical
guarantees involving estimation efficiency, support recovery, as
well as valid statistical inference. The specific contributions
can be concluded as follows.
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1. For distributed estimation, our paper extends the idea of
[14] resulting in a novel method for Distributed High-
dimensional Sparse Quantile Regression (DHSQR) with-
out the stringent assumption that the error term is inde-
pendent of the covariates. Specifically, we start by trans-
forming the covariate and the response, which recasts the
quantile regression into a least squares framework. Next,
we introduce an iterative distributed algorithm based
on an approximate Newton method by using a double-
smoothing approach applied to the global and local loss
functions, respectively. In the distributed system, with p-
dimensional covariates, the local machines only need to
broadcast the p-dimensional gradient vectors (instead of
the p×p Hessian matrix). This optimization problem can
be efficiently addressed on the central machine due to its
simplified least squares formulation.

2. For distributed inference, we transform the ℓ1-penalized
quantile regression into a least squares problem with a
Lasso penalty, making it natural to apply the debiasing
technique for statistical inference. Unlike previous works
in linear regression [15]–[17] and quantile regression
[18], [19], we propose a communication-efficient dis-
tributed debiasing estimator (Debiased DHSQR). This
method uses a local CLIME estimator to approximate
the inverse of the population Hessian matrix, and the
local machines only need to broadcast the local gradients
to the central machine. Based on the debiased DHSQR
estimator, we construct confidence intervals and conduct
hypothesis testing to ensure valid statistical inference.

3. Theoretically, we not only establish the convergence rate
of our DHSQR estimator in the ℓ2-norm (Theorems 1 and
2), but also characterize the beta-min condition for the
exact support recovery (Theorems 3 and 4) which is novel
for distributed high-dimensional sparse estimation [20].
After a constant number of iterations, the convergence
rate and the beta-min condition of the distributed esti-
mator align with the classical theoretical results derived
for a single machine setup [4], [21]. Furthermore, we
give a Bahadur representation for the debiased DHSQR
estimator and provide the non-asymptotic Berry-Esseen
bounds and asymptotic normality of the estimator (The-
orems 5 and 6). These results ensure that the coverage
probability of the confidence interval is asymptotically
close to 1−α and that the Type I error is bounded within
the significance level α (Theorems 7 and 8).

4. Another contribution of this work is the comprehensive
studies on the validity and effectiveness of the proposed
algorithm in various synthetic and real-life examples,
which further support the theoretical findings in this
paper.

We remark that a shorter version of this paper has appeared
as the spotlight in ICML 2024 [22]. In this extended version,
we have provided a debiased approach for distributed inference
(Section IV), as well as establishing the Bahadur represen-
tation, Berry-Esseen bounds, and asymptotic normality for
the debiased estimator (Section V). We have also refined the
theoretical results for the DHSQR estimator (Section III). Ad-

ditional simulation studies of distributed inference construction
have been conducted (Section VII-G).

A. Related Work

Distributed methods. Significant efforts have been ded-
icated to the development of distributed statistical learning
methods, broadly categorized into two main streams. The first
class is known as the divide-and-conquer (DC) methods [6],
[23]–[25]. These one-shot methods usually compute the rele-
vant estimates based on local samples in the first step and then
send these local estimates to a central machine, where the final
estimate is obtained by simply averaging the local estimates.
These methods offer computational efficiency with just one
round of communication, but they have the theoretical con-
straint on the number of local machines to guarantee the global
optimal rate [2], [26]. The second class comprises multi-round
distributed methods designed to improve estimation efficiency
and relax restrictions on the number of local machines [7],
[27], [28]. [8] and [29] proposed a communication-efficient
surrogate likelihood (CSL) framework that can be applied
to low-dimensional estimation, high-dimensional regularized
estimation, and Bayesian inference. Notably, the CSL method
eliminates the need to transfer local Hessian matrices to the
central machine, resulting in significantly reduced communi-
cation costs. It is worth noting that most of the aforementioned
methods only focus on homogeneous data, which can be less
practical in the context of big data analysis.
Distributed linear quantile regression. In the existing liter-
ature, distributed linear quantile regression has been widely
investigated using the traditional divide-and-conquer method
[30]–[32]. However, when dealing with high-dimensional set-
tings, where sparsity assumptions are commonly applied, the
DC estimator is no longer sparse due to de-biasing and
averaging processes, resulting in poor support recovery [14],
[18]. In addition, their methods require a condition on the
number of distributed machines to ensure the global con-
vergence rate. To alleviate the restriction on the number of
machines, [14] transformed the check loss to the square loss
via a kernel smoothing approach and proposed a Newton-type
distributed estimator. The theoretical results offered insights
into estimation errors and support recovery. Nevertheless, their
method and theory require the error term to be independent of
the covariates, which is not very common and hard to verify
in practice. Inspired by the ideas in [8] and [33], [34] studied
a distributed convolution-type smoothing quantile regression
whose loss function is twice continuously differentiable in
both low-dimensional and high-dimensional regimes. Note that
most of the previous works mainly focus on the convergence
rate of their respective estimator, while we further establish
the distributed support recovery and inference theory.
High-dimensional quantile regression statistical inference.
In high-dimensional sparse quantile regression models, sig-
nificant attention has been devoted not only to parameter
estimation but also to inference properties. However, inference
remains particularly challenging due to the bias introduced
by traditional estimation methods. To mitigate the shrinkage
bias induced by ℓ1-regularization, various concave penalties
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have been proposed, such as the SCAD penalty [35] and the
MCP penalty [36]. These methods, however, rely on oracle
properties, meaning valid inferences can only be made on the
information of the non-sparse coefficients. To address these
challenges, several studies have explored innovative inference
methods. [37], [38], and [39] applied the Neyman orthogonal-
ization method to project redundant variables onto the vari-
ables of interest, thereby improving inference accuracy. [40]
studied tuning strategies and multi-quantile aggregation, and
[41] discuss extensions that integrate sparsity with differential
privacy. A major advancement in high-dimensional inference
was the development of debiased or desparsified Lasso esti-
mators. [15] first introduced this approach for linear models,
which was later extended by [16] and [17]. They proposed
debiasing techniques based on the inverse covariance matrix
of predictors. Inference in high-dimensional sparse quantile
regression has also been extensively studied. [30] investigated
inference challenges in high-dimensional composite quantile
regression, while [18] developed the debiased ℓ1 quantile
regression estimator and established its asymptotic normality.
[19] extended debiasing techniques to convolution-smoothing
quantile regression, providing new insights into its asymptotic
properties. Despite these methodological advancements, most
existing approaches remain limited to non-distributed data.
For the distributed setting, [42] proposed a divide-and-conquer
approach for high-dimensional quantile regression using debi-
ased estimators. However, their method requires the number
of local machines can not diverge too fast and only considers
the estimation property. In this paper, we extend the debiasing
technique to the proposed DHSQR estimator and provide a
communication and computation efficient algorithm for valid
inference.

B. Paper Organization and Notations

The rest of the paper is organized as follows. In Section
II, we introduce the proposed distributed estimation method
for high-dimensional sparse quantile regression, including the
Newton-type transformation and the double-smoothing shifted
loss function. Section III provides the theoretical guarantees
for the distributed estimation, including the convergence rate
and support recovery accuracy. In Section IV, we develop a
debiasing method for valid distributed statistical inference and
describe the distributed approach using double-smoothing and
debiasing. Section V establishes the statistical guarantees for
the distributed inference, including the Bahadur representation,
Berry-Esseen bounds, and asymptotic normality. Section VII
presents simulation studies to assess the performance of the
proposed method. Finally, Section IX concludes the paper
and discusses potential future research directions. Thedetailed
proofs of the main theorems are provided in the supplementary
material.

For two sequences {an} and {bn}, we denote an ≲ bn if
an ≤ Cbn, where C is a constant. And an ≍ bn if and only
if an ≲ bn and bn ≲ an. For a vector u = (u1, . . . , up)

T,
we define supp(u) = {j : uj ̸= 0}. We use | · |q to denote
the ℓq-norm in Rp: |u|q = (

∑p
i=1 |ui|q)1/q , for 1 ≤ q < ∞

and |u|∞ = max1≤i≤p |ui|. For S ⊆ {1, . . . , p} with length

|S|, let uS = (ui, i ∈ S) ⊆ R|S|. For a matrix A =
(aij) ∈ Rp×q , define |A|1 =

∑
1≤i≤p

∑
1≤j≤q |aij |, |A|∞ =

max1≤i≤p,1≤j≤q |aij |, ∥A∥∞ = max1≤i≤p

∑
1≤j≤q |aij |,

and ∥A∥op = max|v|2=1 |Av|2. For two subsets S1 ∈
{1, . . . , p} and S2 ∈ {1, . . . , q}, we define the submatrix
AS1×S2 = (aij , i ∈ S1, j ∈ S2), Λmax(A) and Λmin(A)
to be the largest and smallest eigenvalues of A, respectively.
For two positive definite matrixes A and B, A ≻ B means
that A − B is a positive definite matrix; and A ≺ B
means that B − A is a positive definite matrix. Here we
denote I as the identity matrix, ei denotes the i-th column
vector of the identity matrix, and I(·) denotes the indicator
function. For some r ≥ 0, the unit sphere and the ℓ1-norm
ball in Rp are defined as Sp−1 = {u ∈ Rp : |u|2 = 1} and
B1(r) = {u ∈ Rp : |u|1 ≤ r} respectively. In this paper, we
use C to denote a universal constant that may vary from line
to line.

II. METHODOLOGY FOR DISTRIBUTED ESTIMATION

In this section, we introduce the proposed distributed esti-
mator. Inspired by the Newton-Raphson iteration, we construct
a kernel-based estimator that establishes a connection between
quantile regression and ordinary least squares regression in a
single machine setting. Based on this estimator, we design a
distributed algorithm to minimize a double-smoothing shifted
loss function.

A. The Linear Quantile Model

For a given quantile level τ ∈ (0, 1), we consider to
construct the conditional τ -th quantile function Qτ (Y |X) with
a linear model:

Qτ (Y |X) = XTβ∗(τ) =

p∑
j=1

xjβ
∗
j (τ),

where Y ∈ R is a univariate response and X =
(x1, x2, . . . , xp)

T ∈ Rp is p-dimensional covariate vector with
x1 ≡ 1. Here, β∗ = β∗(τ) = (β∗

1(τ), β
∗
2(τ), . . . , β

∗
p(τ)) is the

true coefficient vector that can be obtained by minimizing the
following stochastic optimization problem,

Q(β) = E
[
ρτ (Y −XTβ)

]
, (1)

where ρτ (u) = u{τ − I(u ≤ 0)} is the standard check loss
function [9] with I(·) is the indicator function.

B. Newton-type Transformation on Quantile Regression

To solve the stochastic optimization problem in (1), we use
the Newton-Raphson method. Given an initial estimator β0,
the population form of the Newton-Raphson iteration is

β1 = β0 −H−1(β0)E [∂Q(β0)] , (2)

where ∂Q(β) = X{I(Y −XTβ ≤ 0)−τ} is the subgradient
of the check loss function with respect to β, and H(β) =
∂E[∂Q(β)]/∂β = E[XXTfε|X(XT(β − β∗))] denotes the
population Hessian matrix of E[Q(β)]. Here, we denote the
error term as ε = Y −XTβ∗, and fε|X(·) is the conditional
density of ε given X .
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When the initial estimator β0 is close to the true parameter
β∗, H(β0) will be close to H(β∗) = E[XXTfε|X(0)]. Mo-
tivated by this, we further approximate H(β∗) with Dh(β0)
such that

H(β0) ≈ H(β∗) ≈ Dh(β0) = E(XXTKh(e0)), (3)

where e0 = Y − XTβ0, and Kh(·) = K(·/h)/h with
K(·) denoting a symmetrix and non-negative kernel function,
h→ 0 is the bandwidth. For simplicity of notation, we denote
a pseudo covariate as X̃h =

√
Kh(e0)X . Hence, we can

rewrite Dh(β0) = E(X̃hX̃
T

h ), which is the covariance matrix
of X̃h. Replacing H(β0) with Dh(β0) in (2) leads to the
following iteration,

β1 = β0 −D−1
h (β0)E[∂Q(β0)] (4)

This iteration together with the Taylor expansion of
E[∂Q(β0)] at β∗,

E[∂Q(β0)] = H(β∗)(β0 − β∗) +O(|β0 − β∗|22),

guarantee an improved convergence rate of β1 in ℓ2-norm,

|β1 − β∗|2 =
∣∣β0 −D−1

h (β0,h)(H(β∗)(β0 − β∗)

+ O(|β0 − β∗|22))− β∗∣∣
2
= O

(
|β0 − β∗|22

)
.

Consequently, if we have a consistent estimator β0, we can
refine it by (4).

Now we show how to transform the Newton-Raphson
iteration into a least squares problem. According to (4), we
have

β1 = D−1
h (β0)

{
Dh(β0)β0 − E

[
X (I(e0 ≤ 0)− τ)

]}
= D−1

h (β0)E
{
X̃h

[
X̃T

hβ0 −
1√

Kh(e0)

(
I(e0 ≤ 0)− τ

)]}
.

If we further define a new pseudo response as Ỹh = X̃
T

hβ0−
1√

Kh(e0)
(I(e0 ≤ 0)− τ), then β1 = D−1

h (β0)E(X̃hỸh) =

argminβ∈Rp E(Ỹh − X̃
T

hβ)
2 is the least squares regression

coefficient of Ỹh on X̃h. To further encourage the sparsity of
the coefficient vector, we consider the following ℓ1-penalized
least squares problem,

β1,ℓ1 = argmin
β∈Rp

1

2
E
(
Ỹh − X̃

T

hβ
)2

+ λ|β|1, (5)

where λ > 0 is the regularization parameter. We can also
consider other forms of penalties, including the smoothly
clipped absolute deviations penalty (SCAD, [35]) and the
minimax concave penalty (MCP, [36]). We refer the reader
to [5] for comprehensive reviews on recent developments.

Now we are ready to define the empirical form of β1 in a
single machine. Let β̂0 be an initial estimate based on random
samples ZN = {(Xi, Yi)}Ni=1, then we can transform the
origin covariates and responses by

X̃i,h =
√
Kh(ê0,i)Xi

Ỹi,h = X̃
T

i,hβ̂0−
1√

Kh(ê0,i)
(I(ê0,i ≤ 0)− τ) ,

(6)

for i = 1, . . . , N , where ê0,i = Yi−XT
i β̂0. Thus, we estimate

β∗ by the empirical version of (5):

β̂pool = argmin
β∈Rp

1

2N

N∑
i=1

(Ỹi,h − X̃
T

i,hβ)
2 + λ|β|1. (7)

Given a consistent initial estimator β̂0, we introduce a
reasonable estimator β̂pool by pooling all data into a single ma-
chine. Compared to the standard ℓ1-penalized quantile regres-
sion, the least squares problem plus a Lasso penalty is much
more computationally efficient. Moreover, the smoothness and
strong convexity of the quadratic loss function facilitate the
development of a distributed estimator in the next section.

Remark 1. Inspired by work in [14], we remove the stringent
restriction that the error term ϵ should be independent of the
covariate X . Therefore, we cannot simply take the conditional
density fε|X(0) from H(β∗) in (3). To consider such a
dependence, we further define a pseudo covariate X̃h that can
be regarded as a density-scaled surrogate of X . As indicated
in Remark 2 of [14], the extension to the dependent case
seems relatively straightforward in a single machine setting.
However, it is nontrivial for distributed implementation in both
methodology and theory due to the curse of dimensionality. In
this paper, we succeed in solving it by leveraging a double-
smoothing approach (see details in the next section).

C. Distributed Estimation with a Double-smoothing Shifted
Loss Function

Suppose the random samples ZN = {(Xi, Yi)}Ni=1 are
randomly stored in m machines M1, . . . ,Mm with the equal
local sample size that n = N/m. Without loss of generality,
we assume that M1 is the central machine and denote those
samples in the k-th machine as {(Xi, Yi)}i∈Mk

with |Mk| =
n, for k = 1, . . . ,m. Based on the initial estimator β̂0,
every local machines can compute the transformed samples
as {(X̃i,h, Ỹi,h)}i∈Mk

according to (6). For ease of notation,
let

D̂k,h =
1

n

∑
i∈Mk

X̃i,hX̃
T

i,h,

D̂h =
1

m

m∑
k=1

D̂k,h =
1

N

N∑
i=1

X̃i,hX̃
T

i,h,

(8)

as the k-th local sample covariance matrix and total sample
covariance matrix, respectively. It is worth noting that our al-
gorithm does not need the local machine to explicitly calculate
and broadcast D̂k,h for k ̸= 1 (see in Algorithm 1). We further
define the pseudo local and global loss functions, respectively,
as

Lk(β) =
1

2n

∑
i∈Mk

(Ỹi,h − X̃
T

i,hβ)
2,

LN (β) =
1

2N

N∑
i=1

(Ỹi,h − X̃
T

i,hβ)
2.

(9)
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According to the Taylor expansion of LN (β) around β̂0, we
have

LN (β) = LN (β̂0) + {∂LN (β̂0)}T(β − β̂0)

+
1

2
(β − β̂0)

TD̂h(β − β̂0).
(10)

It is easy to see that ∂LN (β̂0) and D̂h can be simply
calculated by averaging the local ones. However, the burden of
transmitting the local p× p covariance matrix D̂k,h is heavy
when p is large. To save the communication cost, we replace
the global Hessian D̂h with the local Hessian D̂1,b. Here,
h and b denote the global bandwidth and local bandwidth,
respectively, and we assume b ≥ h ≥ 0. Thus we can rewrite
(10) as

LN (β, D̂h) = LN (β, D̂1,b)︸ ︷︷ ︸
(i) Shifted loss

+OP

{
∥D̂h − D̂1,b∥op · |β − β̂0|22

}
︸ ︷︷ ︸

(ii) Approximation error

.
(11)

The second term in (11) is from the Cauchy–Schwarz inequal-
ity. Note that the substituted local Hessian matrix is flexibly
controlled by a local bandwidth b instead of the global band-
width h, which ensures that ∥D̂h−D̂1,b∥op = oP(1) (Detailed
proof can be referred to in the supplemental). Remove the
terms that are independent of β in (i) and the negligible
approximation error (ii) in (11), the shifted loss function can
be simplified to

L̃(β) = 1

2n

∑
i∈M1

(X̃
T

i,bβ)
2 − βT

{
zN + (D̂1,b − D̂h)β̂0

}
,

(12)
where zN = 1

N

∑N
i=1 X̃i,hỸi,h. Up to now, we only need

to focus on the shifted loss function in (12) instead of the
pseudo global loss function in (9) for higher communication
efficiency. Specifically, we define the one-step distributed
estimator as

β̂1,h = argmin
β∈Rp

L̃(β) + λN |β|1. (13)

Note that the local machines only need to compute two
vectors zn,k = 1

n

∑
i∈Mk

X̃i,hỸi,h and D̂k,hβ̂0 =
1
n

∑
i∈Mk

X̃i,h(X̃
T

i,hβ̂0) and then broadcast them to the
central machine with communication cost of O(mp). There
is no need to communicate the p× p covariance matrix D̂k,h.
The central machine first calculates zN and D̂hβ̂0 by simple
averaging, then solves (13) via some well-learned algorithms,
e.g., the PSSsp algorithm [43], the active set algorithm [44]
and the coordinate descent algorithm [45].

Given β̂1,h as the estimator from the first iteration, we
can similarly construct an iterative distributed estimation
procedure. Specifically, in the t-th iteration, we update the
pseudo covariates and responses in (6) by substituting β̂0 with
β̂t−1,h,

X̃
(t)

i,h =

√
Kh(ê

(t−1)
i,h )Xi,

Ỹ
(t)
i,h = (X̃

(t)

i,h)
Tβ̂t−1,h − 1√

Kh(ê
(t−1)
i,h )

(
I(ê

(t−1)
i,h ≤ 0)− τ

)
,

(14)

Algorithm 1 Distributed high-dimensional sparse quantile
regression (DHSQR).

1: Input: Samples {(Xi, Yi)}i∈Mk
, k = 1, . . . ,m, the

number of iterations T , the quantile level τ , the kernel
function K, the global and local bandwidth h and b, the
regularization parameters λ0 and λN,t for t = 1, . . . , T .

2: Compute the initial estimator β̂0,h = β̂0 based on
{(Xi, Yi)}i∈M1 by

β̂0 = argmin
β∈Rp

1

n

∑
i∈M1

ρτ (Yi −XT
i β) + λ0 |β|1 .

3: For t = 1, . . . , T do:
4: Broadcast β̂t−1,h to the local machines.
5: for k = 1, . . . ,m do:
6: The k-th machine update the pseudo covari-

ates X̃
(t)

i,h and responses Ỹ (t)
i,h based on (14), and com-

putes D̂
(t)

k,hβ̂t−1,h = 1
n

∑
i∈Mk

X̃
(t)

i,h((X̃
(t)

i,h)
Tβ̂t−1,h)

and z
(t)
n,k = 1

n

∑
i∈Mk

X̃
(t)

i,hỸ
(t)
i,h . Then send them back

to the first machine.
7: end for
8: The first machine computes (D̂

(t)

1,b−D̂
(t)

h )β̂t−1,h and
z
(t)
N based on

(D̂
(t)

1,b−D̂
(t)

h )β̂t−1,h = D̂
(t)

1,bβ̂t−1,h−
1

m

m∑
k=1

D̂
(t)

k,hβ̂t−1,h,

z
(t)
N =

1

m

m∑
k=1

z
(t)
n,k.

9: Compute the estimator β̂t,h on the first machine
based on (15).

10: end for
11: Return: β̂T,h.

for i = 1, . . . , N , where ê(t)i,h = Yi−XT
i β̂t,h. Similar to (13),

the distributed estimator in the t-th iteration is given by

β̂t,h =argmin
β∈Rp

1

2n

∑
i∈M1

(
(X̃

(t)

i,b)
Tβ

)2

−βT
{
z
(t)
N +

(
D̂

(t)

1,b − D̂
(t)

h

)
β̂t−1,h

}
+ λN,t|β|1,

(15)

where z
(t)
N = 1

N

∑N
i=1 X̃

(t)

i,hỸ
(t)
i,h , D̂

(t)

1,b =

1
n

∑
i∈M1

X̃
(t)

i,b(X̃
(t)

i,b)
T, and D̂

(t)

h = 1
N

∑N
i=1 X̃

(t)

i,h(X̃
(t)

i,h)
T

with X̃
(t)

i,b =
√
Kb(ê

(t−1)
i,h )Xi.

In this paper, we adopt the coordinate descent algorithm to
solve (15). For the choice of the initial estimator β̂0, we take
the solution of ℓ1-penalized QR regression using the local data
on the central machine, which can be solved by the R package
“quantreg” [10] or “conquer” [12]. Other types of initialization
are also available as long as they satisfy Assumption 6 in
Section III. We summarize the entire distributed estimation
procedure in Algorithm 1.
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Space complexity. In each local machine Mi, DHSQR
method necessitates storing {Xi}i∈Mi ∈ Rp×n, {Yi}i∈Mi ∈
Rn, {X̃

(t)

i,h}i∈Mi ∈ Rp×n, and {Ỹ (t)
i,h }i∈Mi ∈ Rn, resulting in

a space complexity of order O(np). Additionally, to solve the
Lasso problem, we require storing a p× p matrix, resulting in
a space complexity not exceeding O

(
p2
)
. Hence, the overall

space complexity is of order O
(
np+ p2

)
for each local

machine. The total space complexity of the total system sums
up to O

(
Np+mp2

)
.

Remark 2. Note that the assumption that the samples are
randomly and evenly stored across the local machines is
commonly required in literature [8], [29]. It is worth pointing
out that the proposed algorithm is still effective if the samples
in other local machines are not randomly distributed as long
as the subsample on the first machine (central machine)
is randomly selected from the entire sample, which is also
claimed in Remark 1 in [14].

III. STATISTICAL GUARANTEES FOR DISTRIBUTED
ESTIMATION

In this section, we establish the theoretical results of our
proposed estimation method, involving the convergence rate
and support recovery accuracy. Firstly, we denote

S = {j : βj ̸= 0, j ∈ N+} ⊆ {1, . . . , p},

as the support of β∗ and |S| = s. We assume the following
regular conditions hold.

Assumption 1. Assume that the kernel function K(·) is
symmetric, non-negative, bounded, and integrates to one. In
addition, the kernel function satisfies that

∫∞
−∞ u2K(u)du <

∞ and min|u|≤1K(u) > 0. We further assume K(·) is
second-order differentiable and its derivative K ′(·) and sec-
ond derivative K ′′(·) are bounded. Moreover, denote κk =∫∞
−∞ |u|kK(u)du for k ≥ 1.

Assumption 2. There exists f2 ≥ f1 > 0 such that f1 ⩽
fε|X(0) ⩽ f2 almost surely (for all X). Moreover, there exists
some l0 such that∣∣fε|X(u)− fε|X(v)

∣∣ ≤ l0|u− v|,

for any u, v ∈ R and all X , and we assume that the derivative
f ′ε|X(u) is bounded.

Assumption 3. The random covariate X ∈ Rp is sub-
Gaussian: there exists some c1 > 0 such that

P
(∣∣∣XTΣ−1/2δ

∣∣∣ ⩾ c1t
)
≤ 2e−t2/2,

for every unit vector δ and t > 0, where Σ = E(XXT).
Furthermore, 0 ≤ λmin ≤ Λmin(Σ) ≤ 1 ≤ Λmax(Σ) ≤
λmax <∞ and the precision matrix Σ−1 satisfies ∥Σ−1∥∞ ≤
C. Besides, m4 = supu∈Sp−1 E(|⟨u,Σ−1/2X⟩|4) <∞.

Assumption 4. Denote I = H(β∗) = E
{
fε|X(0)XXT

}
,

then I satisfies that∥∥ISc×SI
−1
S×S

∥∥
∞ ≤ 1− α,

for some 0 < α < 1. Moreover, we assume that λ− ≤
Λmin(I) ≤ Λmax(I) ≤ λ+ for some λ−, λ+ > 0.

Assumption 5. The dimension p satisfies p = O (Nν) for
some ν > 0. The local sample size n satisfies n ≥ N c for some
0 < c < 1, and the sparsity level s satisfies s = O(

√
log p).

Assumption 6. We assume the initial estimator β̂0,h satisfies
that |β̂0,h − β∗|2 = OP(an), where an ≍

√
s log p/n. And

suppose that P(supp(β̂0,h) ⊆ S) → 1.

Assumption 1 imposes some regularity conditions on the
kernel function K(·), which is satisfied by many popular
kernels, including the Gaussian kernel. Assumption 2 is a mild
condition on the smoothness of the conditional density func-
tion of the error term, which is standard in quantile regression
[14], [34], [46]. Assumption 3 requires that the distribution of
X have heavier tails than Gaussian to obtain standard conver-
gence rates for the quantile regression estimates. Assumption 4
is known as the irrepresentable condition, which is commonly
assumed in the sparse high-dimensional estimation literature
for the support recovery [14], [21], [47]. Assumption 5 is also
a common condition in the distributed estimation literature,
see also in [8], [14], [28]. Note that p = O(Nν), we use
log p instead of the commonly used log(max(p,N)) in the
convergence rates. Assumption 6 assumes the convergence rate
and support recovery accuracy of the initial estimator, which
can be satisfied by the estimator using the local sample from
a single machine under Assumption 2-5 and some regularity
conditions [48]. We first show the convergence rate of the
one-step DHSQR estimator β̂1,h.

Theorem 1. Suppose that the initial estimator satisfies that
|β̂0,h − β∗|2 = OP(an) and let h ≍ (s log p/N)

1/3, b ≍
(s log p/n)

1/4 and an ≍
√
s log p/n. Take

λN = C

(√
log p

N
+ an

(
s log p

n

)1/4
)
,

where C is a sufficient large constant. Then under Assumption
1-6, we have∣∣∣β̂1,h − β∗

∣∣∣
2
= OP

(√
s log p

N
+

√
san

(
s log p

n

)1/4
)
.

(16)

With a proper choice of the global and local bandwidth
h and b, we can refine the initial estimator by one iteration
of our algorithm. Specifically, the convergence rate reduces
from OP(an) to OP(max{

√
s log p/N, s3/4(log p/n)1/4an})

with s3/4(log p/n)1/4 = o(1) by Assumption 5. Now, we can
recursively apply Theorem 1 to get the convergence rate of
the iterative DHSQR estimator.

Theorem 2. Suppose that the initial estimator satisfies that
|β̂0,h − β∗|2 = OP(

√
s log p/n) and let h ≍ (s log p/N)

1/3,
b ≍ (s log p/n)

1/4. For 1 ≤ g ≤ t, take

λN,g = = C

(√
log p

N
+ s3g/4

(
log p

n

)(t+2)/4
)
,
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where C is a sufficiently large constant. Then under Assump-
tion 1-6, we have∣∣∣β̂t,h − β∗

∣∣∣
2
= OP

(√
s log p

N
+ s(3t+2)/4

(
log p

n

)(t+2)/4
)
.

(17)

When the number of iterations t satisfies that

t ≥ tmax =
2 log(N/n)

log(c0n/(s3 log p))
, for some constant c0 > 0,

(18)
the second term in (17) will be dominated by the first term,
therefore, we have |β̂t,h − β∗|2 = OP(

√
s log p/N). Under

Assumption 5, we can easily verify that the right side of (18)
is bounded by a constant, which indicates that after a constant
number of iterations, the DHSQR estimator can reach the same
convergence rate as the traditional ℓ1-penalized QR estimators
in a single machine [21]. Interestingly, our algorithm needs
the number of iterations to increase logarithmically with the
number of machines m to achieve the oracle rate

√
s/N (up to

a logarithmic factor). However, most existing distributed first-
order algorithms require the number of iterations to increase
polynomially with m [49].

Remark 3. It is worth noting that the shrinkage rate of
the second term in (17) is of order (s3 log p/n)1/4, whereas
in [14], it is of order

√
s2 log p/n. The shrinkage rate in

our algorithm is slightly slower than that in [14], indicating
that our algorithm requires more iterations to achieve the
global convergence rate. However, our method is capable of
handling not only the homogeneous case, where the error term
is independent of the covariates, but also the heterogeneous
case, which is more common in practice. This is largely due
to the novel design of double smoothing, and the choice of the
local bandwidth b in our algorithm is crucial to the shrinkage
rate. The experiments in Section VII further demonstrate this
phenomenon. It is important to emphasize that the choices
of the two bandwidths h and b in Theorem 1 and 2 play
determining roles in the distributed inference discussed in
Section IV.

Next, we provide the support recovery of the one-step and t-
th iteration DHSQR estimators in the following two theorems.
Let β̂t,h = (β̂1

t,h, β̂
2
t,h, . . . , β̂

p
t,h) and

Ŝt = {j : β̂p
t,h ̸= 0, j ∈ N+},

be the support of β̂t,h, where t ≥ 1.

Theorem 3. Under the same conditions of Theorem 1, we have
P(Ŝ1 ⊆ S) → 1. Furthermore, if there exists a sufficiently
large constant C > 0 such that

min
j∈S

∣∣β∗
j

∣∣ ≥ C
∥∥I−1

S×S

∥∥
∞

(√
log p

N
+ an

(
s log p

n

)1/4
)
.

(19)
Then we have P(Ŝ1 = S) → 1.

Based on Theorem 3, we can show a weaker beta-min
condition for the support recovery result of the t-th iteration
DHSQR estimator.

Theorem 4. Under the same conditions of Theorem 2, we have
P(Ŝt ⊆ S) → 1. Furthermore, if there exists a sufficiently
large constant C > 0 such that

min
j∈S

∣∣β∗
j

∣∣ ≥ C
∥∥I−1

S×S

∥∥
∞

(√
log p

N
+ s3t/4

(
log p

n

) t+2
4

)
.

(20)
Then we have P(Ŝt = S) → 1.

Theorems 3 and 4 establish the support recovery results
of our one-step and iterative DHSQR estimators by the beta-
min condition minj∈S

∣∣β∗
j

∣∣, which is wildly used in the sparse
high-dimensional estimation literature. When the number of
iterations t satisfies (18), the beta-min condition will reduce
to minj∈S

∣∣β∗
j

∣∣ ≥ C
∥∥I−1

S×S

∥∥
∞

√
log p/N , which matches the

rate of the lower bound for the beta-min condition in a single
machine [4].

IV. METHODOLOGY FOR DISTRIBUTED DEBIASING

In this section, we develop a debiasing method for valid
distributed statistical inference for the proposed DHSQR esti-
mator. We first introduce the debiasing technique for the trans-
formed Lasso estimator and then extend it to the distributed
setting using a double-smoothing approach. Specifically, to
balance communication efficiency and statistical accuracy, we
adopt the local CLIME estimator [50] with a local bandwidth
b to estimate the sparse precision matrix. The local machines
only need to compute and broadcast the gradients with a global
bandwidth h.

A. Debiasing Transformed Lasso Estimator

Recall that we transform the standard ℓ1-penalized quantile
regression into a least squares regression with a Lasso penalty
in (7). In the literature, substantial work has discussed that
the Lasso estimator is asymptotically biased due to the ℓ1-
penalty, thus lacking a tractable limiting distribution. This has
been explored in linear regression [7], [15]–[17] and quantile
regression [18], [19], [37], [51]. Following the debiasing ap-
proach proposed by [15] and [16], we first invert the optimality
condition of (7). The estimator β̂pool satisfies that

1

N

N∑
i=1

(X̃
T

i,hβ̂pool − Ỹi,h)X̃i,h + λg = 0, (21)

where g = (g0, g1, . . . , gp)
T is a sub-gradient of ∥·∥1 at β̂pool,

satisfying gj = sign
(
β̂pool;j

)
if β̂pool;j ̸= 0 and otherwise

gj ∈ [−1, 1]. Here, β̂pool;j denotes the j-th coordinate of
β̂pool.



PREPRINT SUBMITTED 8

Since β̂pool is close to β∗ when N is large, according to
concentration inequalities and Taylor expansion, it holds that:

1

N

N∑
i=1

(X̃
T

i,hβ̂pool − Ỹi,h)X̃i,h =
1

N

N∑
i=1

(I(êpool,i ≤ 0)− τ)Xi

≈ 1

N

N∑
i=1

(I(εi ≤ 0)− τ)Xi

+ E
[
(I(êpool,i ≤ 0)− τ)X

]
− E

[
(I(ε ≤ 0)− τ)X

]
≈ 1

N

N∑
i=1

(I(εi ≤ 0)− τ)Xi +H(β∗)(β̂pool − β∗). (22)

where εi = Yi−XT
i β

∗ and êpool,i = Yi−XT
i β̂pool. Resorting

(22), we can get

β̂pool ≈ β∗ +H−1(β∗)
1

N

N∑
i=1

(X̃
T

i,hβ̂pool − Ỹi,h)X̃i,h

−H−1(β∗)
1

N

N∑
i=1

(I(εi ≤ 0)− τ)Xi.

According to (21), the non-negligible bias term
is H−1(β∗) 1

N

∑N
i=1(X̃

T

i,hβ̂pool − Ỹi,h)X̃i,h which
needs to be removed from β̂pool. And the term
H−1(β∗) 1

N

∑N
i=1(I(εi ≤ 0)− τ)Xi is asympotic negligible.

Therefore, the debiased pooled DHSQR estimator can be
defined as

β̃pool = β̂pool + Ŵ
1

N

N∑
i=1

(X̃
T

i,hβ̂pool − Ỹi,h)X̃i,h, (23)

where Ŵ is an approximate inverse to H(β∗). Note
that H(β∗) is identical to I in Assumption 4; we
choose one of them to denote the population Hessian ma-
trix for ease of notation. Intuitively, the correcting term
1
N

∑N
i=1 X̃i,h(X̃

T

i,hβ̂pool− Ỹi,h) is a subgradient of λ∥ · ∥1 at
β̂pool. By adding a term proportional to the subgradient of the
penalty, the debiased pooled DHSQR estimator compensates
for the bias induced by regularization.

B. General CLIME Estimator

Under Assumptions 1-3, if the initial estimator β̂0 is con-
sistent, we can show that D̂h(β̂pool) = 1

N

∑N
i=1Kh(Yi −

XT
i β̂pool)XiX

T
i is consistent estimator of H(β∗). As a con-

sequence, we can inverse D̂h(β̂pool) to approximate the pre-
cision matrix H−1(β∗). To avoid the case when D̂h(β̂pool)
is singular, we use the sparse precision matrix estimators
proposed in [52], also named as the CLIME estimator. Specif-
ically, Ŵh is the solution to the following optimization
problem:

Ŵh =argmin
W∈Rp×p

∥W∥∞, s.t. |WD̂h(β̂pool)− I|∞ ≤ γN,h,

(24)
where γN,h is a predetermined tuning parameter. The opti-
mization can be solved by the R package “falre” [53]. Since
the obtained result Ŵh is not symmetric in general, the final

CLIME estimator is obtained by symmetrizing Ŵh as follows,
if Ŵh = (ŵi,j)1≤i,j≤p, then

Ŵ′
h =

(
ŵ′

i,j

)
1≤i,j≤p

,

where ŵ′
i,j = ŵ′

j,i = ŵi,jI{|ŵi,j | ≤ |ŵj,i|} + ŵj,iI{|ŵi,j | >
|ŵj,i|}. Without loss of generality, we assume Ŵh is sym-
metric in the rest of the paper. For simple implementation and
technical analysis, the optimization problem can be decom-
posed into p-vector minimization problem. For more details,
we refer to Lemma 1 in [52].

C. Distributed Approach: Double-smoothing and Debiasing

Recall the distributed setting in Section II-C, we assume
the entire data is randomly and evenly stored in m local
machines with sample size n = N/m. A naive approach is to
construct the averaging debiased Lasso estimator. Specifically,
in each machine Mk, we first use the local data to calculate
the transformed Lasso estimator β̂k,naive and local CLIME
estimator Ŵ(k)

h as that in (7) and (24). The final estimator is
then defined as

β̄
d
DC =

1

m

m∑
k=1

(
β̂k,naive

+ Ŵ
(k)
h

1

n

∑
i∈Mk

(X̃
T

i,hβ̂k,naive − Ỹi,h)X̃i,h

)
.

(25)

However, the averaged debiased estimator needs each machine
to estimate the p× p precision matrix, thus the whole system
requires solving mp optimization problems. Along with the
expensive computation cost, the theoretical results also need a
stringent condition that the number of machines m is not too
large to retain the global convergence rate [30]. To address
these issues, motivated by the iterative double-smoothing
distributed estimator proposed in (15), we define its debiased
version in T0-th iteration as

β̃T0,h
= β̂T0,h

− Ŵ
(1)
b

1

N

N∑
i=1

(
(X̃

(T0)

i,h )Tβ̂T0,h
− Ỹ

(T0)
i,h

)
X̃

(T0)

i,h ,

(26)

where Ŵ
(1)
b represents the solution in (24) based on D̂

(T0)

1,b =

1
n

∑
i∈M1

X̃
(T0)

i,b (X̃
(T0)

i,b )T and tuning parameter γN,n,b, and
β̂T0,h is T0-th estimator from algorithm 1 with T0 ≥ tmax+1
where tmax is defined in inequality (18). To achieve a trade-
off between communication efficiency and statistical accuracy,
we only use a local CLIME estimator Ŵ

(1)
b instead of the

averaged one
∑m

k=1 Ŵ
(k)
h /m, thus the local machines need

not to compute and communicate the p× p matrix.

Remark 4. Note that D̂
(T0)

1,b = 1
n

∑
i∈M1

Kb(Yi −
XT

i β̂T0−1,h)XiX
T
i . Under the assumptions in Theorem 2

and with T0 − 1 satisfying inequality (18), the (T0 − 1)-th
DHSQR estimator can achieve the global convergence rate,
i.e., |β̂T0−1,h − β∗|2 = OP(

√
s log p/N). This is a key

condition to derive the non-asymptotic bound of Ŵ(1)
b as an

approximation of the inverse of D̂
(T0)

1,b and thus H(β∗), as
shown in Lemma 1 in the next section. We also want to empha-
size that the global bandwidth h and local bandwidth b should
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Algorithm 2 Inference of distributed high-dimensional debi-
asing quantile regression

1: Input: Samples {(Xi, Yi)}i∈Mk
, k = 1, . . . ,m, the quan-

tile level τ , the kernel function K, the global and local
bandwidth h and b, significance level ρ, and ν ∈ B1(r).

2: Run Algorithm 1 for T0 iteration and obtain the final
estimator β̂T0,h and the pseudo covariates and responses

{(X̃
(T0)

i,h , Ỹ
(T0)
i,h )}Ni=1.

3: The central machine broadcast β̂T0,h to each local ma-
chine.

4: for k = 1, . . . ,m do:
5: The k-th local machine compute g

(k)
T0,h

=

1
n

∑
i∈Mk

((X̃
(T0)

i,h )Tβ̂T0,h − Ỹ
(T0)
i,h )X̃

(T0)

i,h , and
then send them back to the central machine.

6: end for
7: The central machine solve the CLIME optimization in (24)

and get Ŵ(1)
b based on the local data. Then compute the

debiased estimator as follows:

β̃T0,h = β̂T0,h − Ŵ
(1)
b

1

m

m∑
k=1

g
(k)
T0,h

.

8: Output: The confidence interval for νTβ∗ is ĈN (α)
defined in (33) and the p-value of the hypothesis test for
β∗
j = 0 is Pj defined in (35).

satisfy the conditions in Theorem 2, i.e., h ≍ (s log p/N)
1/3

and b ≍ (s log p/n)
1/4.

To formulate (26), we first run Algorithm 1 for T0 itera-
tions, and the central machine broadcasts β̂T0,h to each local
machine. Each local machine then calculates the local gradient
1
n

∑
i∈Mk

(X̃
T

i,hβ̂T0,h − Ỹi,h)X̃i,h and sends it to the central
machine. The central machine averages the local gradients and
performs the CLIME algorithm based on its local data to get
Ŵ

(1)
b . Finally, we obtain the debiased DHSQR estimator in

(26). Algorithm 2 outlines the steps for distributed inference.

V. STATISTICAL GUARANTEES FOR DISTRIBUTED
INFERENCE

In this section, we provide the theoretical guarantees for
the debiased DHSQR estimator, including its Bahadur rep-
resentation, Berry-Esseen bounds, and asymptotic normality.
Finally, we demonstrate how to construct confidence intervals
and perform hypothesis testing based on it.

A. Non-asymptotic Bound of the CLIME Estimator

Before presenting the main results, we first show the non-
asymptotic bound of Ŵ(1)

b , which is an approximation of the

inverse of D̂
(T0)

1,b and H(β∗). Note that Ŵ(1)
b is a specifical

case of the CLIME estimator for sparse precision matrix. To
ensure the efficiency of the CLIME estimator and extend the
related theory in [52], we need an additional assumption on
the inverse of the population Hessian H−1(β∗).

Assumption 7. There exists a constant M ′ > 0 such
that ∥H−1(β∗)∥∞ ≤ M ′. Moreover, H−1(β∗) :=
(h̃1, . . . , h̃p)

T = (h̃i,j)1≤i,j≤p is sparse row-wise, i.e.,
max0≤i≤p

∑p
j=0 I(h̃i,j ̸= 0) ≤ cN,p, cN,p ≥ p, where cN,p

is positive and bounded away from 0 and allowed to increase
as N and p grow.

Assumption 7 requires H−1(β∗) to be sparse both in terms
of ℓ1-norm and matrix row space. This assumption is quite
standard in the literature of precision matrix estimation and
more general inverse Hessian matrix estimation [16], [52],
[54]. Note that a similar assumption is also used in [19] for
the inference of convolution-smoothing quantile regression in
a single machine setting. However, their assumption relies
on the sparsity of the inverse of the population kernel ma-
trix E(Kh(ε)XXT), which is intrinsically tied to a certain
bandwidth h. In contrast, our assumption is directly related
to the population Hessian matrix of the quantile loss function
H(β∗), which is independent of the bandwidth h. This makes
our assumption more reliable and applicable to a wider range
of quantile regression problems.

Lemma 1. Suppose the conditions in Theorem 2 and Assump-
tions 1-7 hold, the iteration satisfies T0 ≥ tmax+1, then with
probability near to 1, we have

∥Ŵ(1)
b ∥∞ ≤ ∥H−1(β∗)∥∞, |Ŵ(1)

b D̂
(T0)

1,b − I|∞ ≲ γN,n,b,

|Ŵ(1)
b H(β∗)− I|∞ ≲ γN,n,b,

(27)
where γN,n,b =

√
log p
nb + log p

nb + s2(log p)3

Nb3 + s
√

(log p)2

N ( 1b +√
log p
nb3 + log p

nb2 ) + b2. Thus we have

∥Ŵ(1)
b −H−1(β∗)∥∞ ≲ 8cN,pγN,n,b∥H−1(β∗)∥∞ ≍ γN,n,b.

(28)

Lemma 1 shows several upper-bound properties of the
CLIME estimator of the Hessian. We need to emphasize
the importance of γN,n,b in the upper bound, which plays a
key role in deriving the asymptotic results. When the local
bandwidth b satisfies b ≍ (s log p/n)

1/4 and the sparsity s =

O(
√
log p), γN,n,b will be dominated by the first term

√
log p
nb ,

and we can obtain that γN,n,b ≲ max( (log p)5/16

n3/8 , (log p)9/8

m1/2n1/4 ).
We will frequently use this lemma in the following theorems.

B. Bahadur Representation and Berry-Esseen bound
In this section, we establish a Bahadur representation for

the debiased DHSQR estimator β̃T0,h, ensuring the theoret-
ical foundation of the statistical inference. Denote δ̂T0,h =

β̂T0,h − β∗ and ê
(T0)
i,h = Yi − Xi

Tβ̂T0−1,h, we can get the
following equality after simple calculation (details can be seen
in Appendix):

√
NνT(β̃T0,h

− β∗) = νTH−1(β∗)
1√
N

N∑
i=1

(τ − I(εi ≤ 0))Xi

−
√
NνT (Γ1 + Γ2 + Γ3 + Γ4) ,

where ν lies in the ℓ1-ball B1(r) = {a ∈ Rp : |a|1 ≤ r},
1√
N

∑N
i=1(I(εi ≤ 0) − τ)Xi is a zero-mean random vector,
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and let θ ∈ (0, 1). The remainder is given by the expression
Γ1−Γ4, which is detailed in the supplement. Note that by the
De Moivre-Laplace Central Limit Theorem, as N → ∞, we
have

1√
N

N∑
i=1

(I(εi ≤ 0)− EI(εi ≤ 0))
D→ N(0, τ(1− τ)),

(29)
where D→ represents for convergence in distribution. With
the derived convergence rates of β̂T0,h and Ŵ

(1)
b in

Theorem 2 and Lemma 1, we can proof that
√
NνT

(Γ1 + Γ2 + Γ3 + Γ4) = oP(1) when N,n → ∞. Informally,
by Slutsky theorem, we can get the following asymptotic
distribution of

√
NνT(β̃T0,h − β∗) as

√
NνT(β̃T0,h

− β∗)
D→ N(0, τ(1− τ)νTH−1(β∗)ΣH−1(β∗)ν).

Theorem 5. Suppose the conditions in Theorem 2 and As-
sumptions 1-7 hold, the iteration satisfies T0 ≥ tmax + 1, the
global and local bandwidths satisfy that h ≍ (s log p/N)

1/3,
b ≍ (s log p/n)

1/4 and the sparsity s = O(
√
log p), then for

any ν ∈ B1(r), the debiased DHSQR estimator β̃T0,h in (23)
satisfies∣∣∣√N ν⊤(β̃T0,h

− β∗)− 1√
N

ν⊤H−1(β∗)
N∑
i=1

(
I(εi≤0)− τ

)
Xi

∣∣∣
≲
r s5/4log3/2p

N1/4
+ r cN,pmax

( (log p)21/16
n3/8

,
(log p)17/8

m1/2n1/4

)
.

(30)
with probability near to 1.

Theorem 5 establishes a distributional approximation in the
form of a Berry-Esseen bound for the debiased DHSQR esti-
mator. The explicit error bound of the normal approximation
is based on the selection of the global and local bandwidths,
h and b, and the sparsity level s. When the sample size
N,n → ∞, we can derive

√
Nσ−1

τ νT
(
β̃T0,h − β∗

)
D→

N(0, 1) uniformly over ν ∈ B1(r), where σ2
τ = τ(1 −

τ)νTH−1(β∗)ΣH−1(β∗)ν. This enables us to construct
confidence intervals and perform hypothesis testing with a
consistent estimator of the asymptotic variance. In particular,
to reduce the computation and communication burden, we
choose the local CLIME estimator and local sample covariance
matrix to build the estimated variance. The following theorem
provides the theoretical guarantee for our choice.

Theorem 6. Suppose the conditions in Theorem 2 and As-
sumptions 1-7 hold, when the global and local bandwidths
satisfy that h ≍ (s log p/N)

1/3, b ≍ (s log p/n)
1/4 and the

sparsity s = O(
√
log p), the iteration satisfies T0 ≥ tmax+1,

then for any ν ∈ B1(r), the debiased DHSQR estimator β̃T0,h
in (23) satisfies

sup
x∈R

∣∣∣∣∣P
( √

N ν⊤(β̃T0,h
− β∗)√

τ(1− τ)ν⊤Ŵ
(1)
b Σ̂

(1)
Ŵ

(1)
b ν

≤ x

)
− Φ(x)

∣∣∣∣∣
≲
r s5/4 log3/2 p

N1/4
+ r cN,p max

(
(log p)21/16

n3/8
,
(log p)17/8

m1/2n1/4

)

+ r2
(log p)1/2

n1/2
.

(31)

with probability near to 1, where Φ(·) denotes the cumula-
tive distribution function of the standard normal random vari-
able and Σ̂

(1)
= 1

n

∑
i∈M1

XiX
T
i is the sample covariance

matrix. Thereby, there holds
√
NνT(β̃T0,h − β∗)√

τ(1− τ)νTŴ
(1)
b Σ̂

(1)
Ŵ

(1)
b ν

D→ N(0, 1) (32)

as N,n → ∞, where D→ represents for convergence in
distribution.

Under some certain choice of the global and local band-
widths, and the iteration, Theorem 6 shows that the linear
functionals of β̃T0,h are asymptotically normal as N,n→ ∞
with the local-based estimated variance. To the best of our
knowledge, this is the first result with explicit error bounds and
asymptotic normality for high-dimensional debiased quantile
estimator in a distributed setting. In addition, with a sparse
vector ν, we can construct the asymptotic normality that for
every single parameters, i.e., let ν = (0, . . . , 1, . . . , 0)T, and√
N
(
β̃T0,h,j − β∗

j

)
D→ N(0, τ(1 − τ)[Ŵ

(1)
b Σ̂

(1)
Ŵ

(1)
b ]j,j)

with [·]j,j denotes the j-th diagonal elements.

C. Confidence Interval and Hypothesis Test
In this section, we consider the distributed inference for

the proposed debiased DHSQR estimator β̃T0,h. First, we
construct the confidence interval of the linear functionals of
β̃T0,h. For significance level α ∈ (0, 1), from Theorem 6, it
is straightforward to derive an asymptotically valid confidence
interval for νTβ̃

∗
as

ĈN (α) =

νTβ̃T0,h ±
ζ(τ, α,ν,Ŵ

(1)
b , Σ̂

(1)
)√

N

 , (33)

where ζ(τ, α,ν,Ŵ
(1)
b , Σ̂

(1)
) = Φ−1(1 −

α/2)

√
τ(1− τ)νTŴ

(1)
b Σ̂

(1)
Ŵ

(1)
b ν and Φ−1(1 − α/2)

is the 1− α/2 quantile of the standard normal distribution.

Theorem 7. Suppose the conditions and assumptions in The-
orem 6 hold, then for any ν ∈ B1(r), the confidence interval
ĴN (α) is asymptotically valid, namely

lim
N,n→∞

sup
β∗:|β∗|0≤s

P(νTβ∗ ∈ ĈN (α)) = 1− α. (34)

Next, we consider a hypothesis test for one single variable
and assess the statistical significance of the non-zero coeffi-
cient. Specifically, let the null hypothesis H0,j : β

∗
j = 0 versus

the alternative hypothesis H1,j : β∗
j ̸= 0. We construct a p-

value Pj for the test H0,j as follows:

Pj = 2

1− Φ

 √
N |β̃T0,h,j |√

τ(1− τ)[Ŵ
(1)
b Σ̂

(1)
Ŵ

(1)
b ]

1/2
j,j

 .

(35)

Consequently, the decision rule based on the p-value Pj is

T̂j(α) =

{
1 if Pj ≤ α (reject H0,j),

0 otherwise (accept H0,j),
(36)
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where α is the fixed target Type I error probability. Note
that choosing βj ̸= 0 arbitrarily close to zero, it makes no
difference to distinguish H0,j and H0,j . Consequently, we
assume that |βj | ≥ ψ if βj ̸= 0. Follow the framework of
high-dimensional linear regression in [17], we give a family
of tests for all s-sparse vectors. Specifically, let Tj,X(Y) :
RN → {0, 1}, where X ∈ RN×p and Y ∈ RN is the global
design matrix and response vector. For ψ > 0, we define

αj(T ) = sup
β∗

{
Pβ∗,X,Y

(
Tj,X(Y ) = 1

)
: β∗ ∈ Rp, |β∗|0 ≤ s, β∗

j = 0
}
,

ϱj(T, ψ) = sup
β∗

{
Pβ∗,X,Y

(
Tj,X(Y ) = 0

)
: β∗ ∈ Rp, |β∗|0 ≤ s, |β∗

j | ≥ ψ
}
.

where Pβ∗,X,Y(·) denotes the probability measure induced
by (X,Y) and the true parameters β∗.

Theorem 8. Suppose the conditions and assumptions in 6
hold, considering a sequence of design matrix X ∈ RN×p,
for any j ∈ [p] and α ∈ [0, 1], then for test defined in (36),
we have

lim
N,n→∞

αj(T̂j) ≤ α, (37)

lim inf
N,n→∞

1− ϱj(T̂j , ψ)

1− ϱj(ψ)
≥ 1, (38)

1− ϱj(ψ) = R

α, √
NE[fε|X(0)]ψ√

τ(1− τ)[H−1(β∗)]j,j

 , (39)

where R(α, x) = P(z1−α/2 ≤ |Z + x|) = 2 − Φ(z1−α/2 +
x)−Φ(z1−α/2−x) for Z ∼ N(0, 1) ,z1−α/2 = Φ−1(1−α/2)
,and x ∈ (0,∞).

Theorem 8 establishes that the Type I error, αj(T̂j), is
uniformly bounded above by the significance level α, while
the statistical power, 1 − ϱj(T̂j , ψ), is bounded below by
1−ϱj(ψ). Similar theoretical guarantees for high-dimensional
linear regression and quantile regression in a single-machine
setting have been derived in [17] and [19].

VI. COMPARISON TO THE COMPETITORS

We compare our DHSQR method with other three competi-
tors, DREL, DPQR, and Avg-DC methods, whose definitions
are provided in the simulation part of Section VII.
Space Aspects. The space complexity of the DHSQR method
is provided in Section 2.3 of the main text. Similarly,
all other algorithms exhibit the same spatial complexity of
O
(
np+ p2

)
. While our algorithm demonstrates strong per-

formance, it remains comparable to other methods in terms
of space complexity. We prioritize efficient storage utilization,
avoiding unnecessary memory overhead compared to compet-
ing algorithms.
Computational Aspects. Compared to the Avg-DC method,
our approach eliminates the need to solve non-smoothness
quantile optimization on each machine. Instead, each local
machine only calculates and communicates a p-dimensional
vector (rather than a p× p matrix), while the central machine
performs linear optimization with a Lasso penalty using a co-
ordinate descent algorithm. Our method incurs lower commu-
nication costs. For instance, DREL [14] requires an additional

round of communication for calculating and broadcasting the
density function f̂g,k(0). Simulation results demonstrate that
DHSQR outperforms DREL in terms of speed. Leveraging a
Newton-type iteration, our method is a second-order algorithm,
requiring fewer iterations to achieve convergence compared to
gradient-based first-order algorithms like DPQR [34].
Theoretical Aspects. In addition, we wish to reiterate the
theoretical innovations of our method, DHSQR. Unlike the
DREL method, we relax the homoscedasticity assumption of
the error term. In contrast to the Avg-DC and DPQR methods,
we provide theoretical guarantees to support recovery and
statistical inference.

TABLE I: Comparison of different methods.

Method Convergence rate Support recovery Heterogeneity Inference

DHSQR ✓ ✓ ✓ ✓

DREL ✓ ✓ × ×

DPQR ✓ × ✓ ✓ (only low-dimension)

Avg-DC ✓ × × ×

VII. SIMULATION STUDIES

A. Simulation Setup

In this section, we provide simulation studies to assess the
performance of our DHSQR estimator. We generate synthetic
data from the following linear models, corresponding to the
homoscedastic error case (Model 1) and the heteroscedastic
error case (Model 2):

• Model 1: Yi = XT
i β

∗ + εi;
• Model 2: Yi = XT

i β
∗ + (1 + 0.4xi1)εi,

where Xi = (1, xi1, . . . , xip)
T is a p-dimensional vector and

(xi1, . . . , xip) is drawn from a multivariate normal distribution
N(0,Σ) with covariance matrix Σij = 0.5|i−j| for 1 ≤ i, j ≤
p, the true parameter β∗ = (1, 1, 2, 3, 4, 5,0p−5)

T. We fix the
dimension p = 500, and consider three different values of τ ,
i.e., τ ∈ {0.3, 0.5, 0.7}. We consider the following three noise
distributions:

1) Normal distribution: the noise εi ∼ N(0, 1);
2) t3 distribution: the noise εi ∼ t(3);
3) Cauchy distribution: the noise εi ∼ Cauchy(0, 1).
For the choice of the kernel function, we use the standard

Gaussian kernel function that satisfies Assumption 1. For
the global and local bandwidth, we set h = 5(s log p/n)1/3

and b = 0.53(s log p/n)1/3 , respectively, according to the
theoretical results in Theorem 1 and 2. The regularization
parameters λN,g are selected by validation. Specifically, we
choose C0 to minimize the check loss on the validation set.
All the simulation results are the average of 100 independent
experiments.

To evaluate the performance of our proposed method, we
report the ℓ2-error between the estimate and the true parameter.
In addition, we calculate precision and recall defined as the
proportion of correctly estimated positive (TP) in estimated
positive (TP+FP) and the proportion of correctly estimated
positive (TP) in true positive (TP+FN), which is used to show
the support recovery accuracy (i.e., precision = 1 and recall = 0
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The case of heteroscedastic errors

The case of homoscedastic errors

Fig. 1: The ℓ2-error with an error bound between the true
parameter and the estimated parameter versus the number of
iterations with a fixed quantile level τ = 0.5.

implies perfect support recovery). We also report the F1-score
defined as

F1 =
2

Recall −1 + Precision −1 ,

which is commonly used as an evaluation of support recovery.
Note that F1-score= 1 implies perfect support recovery.
We compare the finite sample performance of the DHSQR
estimator and the other four estimators:

(a) Averaged DC (Avg-DC) estimator which computes the ℓ1-
penalized QR estimators on the local machine and then
combines the local estimators by taking the average;

(b) The distributed high-dimensional sparse quantile regres-
sion estimator on a single machine with pooled data
defined in (7), which is denoted by Pooled DHSQR;

(c) Distributed robust estimator with Lasso (DREL), see in
[14];

(d) Distributed penalty quantile regression estimator (DPQR)
with convolution smoothing, see in [34], [55].

B. Effect of the number of iterations Under Heavy-Tailed
Noise

We first show the effect of the number of iterations in our
proposed method. We fix the total sample size N = 20000
and local sample size n = 500. We plot the ℓ2-error from the
true QR coefficients versus the number of iterations. Since
the Avg-DC only requires one-shot communication, we use a
horizontal line to show its performance. The results are shown
in Figure 1.

From the result, our DHSQR estimator outperforms the
Avg-DC and DPQR estimators in all the cases after a few
iterations, and the estimated ℓ2-error is very close to that of
the pooled DHSQR estimator. Our method is robust for dif-
ferent noise settings, while DPQR performs poorly for heavy-
tailed noise. Interestingly, for the heteroscedastic error case,
the DREL estimator becomes unstable and fails to converge
since it ignores the dependence between the error term and
covariates. These results confirm our theoretical findings in
Section II. For the rest of the experiments in this section, we
fix the number of iterations T = 10.

Fig. 2: The ℓ2-error and F1 score from the true parameter
versus the number of total and local sample size with a fixed
quantile level τ = 0.5 and Normal error distribution.

C. Effect of Total Sample Size and Local Sample Size

In this section, we investigate the performance of our
proposed estimator under varying total and local sample sizes.
We only consider the setting with normal error case and
quantile level τ = 0.5. For the effect of total sample size, we
fix the local sample size n = 500, and vary the total sample
size N ∈ {5000, 10000, 15000, 20000, 25000}. For the effect
of local sample size, we fix the total sample size N = 20000,
and vary the local sample size n ∈ {200, 500, 1000, 2000}.
We plot the ℓ2-error and F1-score of the five estimators under
different models in Figure 2.

The ℓ2-error of all methods decreases with an increase in
the total sample size N and local sample size n, as shown in
Figure 2. For DHSQR, DPQR, and DREL estimators, as N
increases or n increases, the ℓ2-error tends to decrease, and
both of them outperform the Avg-DC estimator. We can see
that the ℓ2-error of DHSQR is very close to that of the Pooled
DHSQR estimator in both homoscedastic and heteroscedastic
error cases. The DHSQR estimator is better than other three
distributed estimators. In the heteroscedastic error case, the
DREL estimator’s ℓ2-error is significantly worse compared to
DHSQR and DPQR. The Pooled DHSQR estimator’s perfor-
mance is not significantly affected by variations in n, while
Avg-DC shows minimal sensitivity to the changes in N . In
terms of support recovery, as Figure 2 is shown, both DHSQR,
Pooled DHSQR, DPQR, and DREL estimators outperform
the Avg-DC estimator in all settings, and their F1 score are
nearly equal to 1. It is also noteworthy that the Avg-DC
estimator fails in support recovery since it is usually dense
after averaging, especially when N is large and n is small. We
also provide some additional experiment results using quantile
level τ = {0.3, 0.5, 0.7}. The results are reported in Tables II-
VII(* indicates failure to converge).

D. Sensitivity Analysis for the Bandwidth

In this section, we study the sensitivity of the scaling
constant in the bandwidth of the DHSQR estimator. Recall that
the global bandwidth is h = ch(s log p/n)

1/3 and the local
bandwidth is b = cb(s log p/n)

1/3 with constant ch, cb > 0
being the scaling constant. We fix the quantile level τ = 0.5,
the number of local sample size n = 500 and the number total
sample size N = 20000, We vary the constant ch, cb from 1 to
10 and compute the F1-score and the ℓ2-error of the DHSQR
estimator under the heteroscedastic error case. Due to space
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TABLE II: The ℓ2-error, precision, and recall of the DHSQR,
Pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the homoscedastic
error case. The quantile level is fixed τ = 0.3 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

n 200 500 1000

N 5000 10000 20000 5000 10000 20000 5000 10000 20000

DHSQR Precision 0.951(0.100) 0.961(0.072) 0.967(0.082) 0.968(0.100) 0.966(0.066) 0.995(0.035) 0.941(0.141) 0.961(0.108) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.126(0.077) 0.135(0.128) 0.089(0.067) 0.092(0.017) 0.077(0.025) 0.059(0.028) 0.097(0.022) 0.073(0.022) 0.054(0.013)

Pooled DHSQR Precision 0.952(0.102) 0.974(0.055) 0.997(0.020) 0.947(0.101) 0.955(0.083) 0.997(0.020) 0.939(0.112) 0.964(0.071) 0.997(0.020)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.092(0.017) 0.072(0.016) 0.049(0.012) 0.091(0.016) 0.073(0.017) 0.049(0.012) 0.091(0.017) 0.073(0.022) 0.049(0.012)

DPQR Precision 0.967(0.069) 0.949(0.097) 0.978(0.057) 0.917(0.132) 0.970(0.067) 0.986(0.048) 0.960(0.087) 0.986(0.048) 0.987(0.053)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.137(0.092) 0.141(0.119) 0.094(0.068) 0.101(0.020) 0.078(0.027) 0.061(0.030) 0.098(0.017) 0.076(0.011) 0.054(0.014)

DREL Precision 0.970(0.081) 0.991(0.034) 0.994(0.028) 0.934(0.103) 0.986(0.043) 0.994(0.028) 0.925(0.105) 0.986(0.043) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.095(0.017) 0.065(0.016) 0.049(0.009) 0.091(0.015) 0.064(0.014) 0.044(0.008) 0.088(0.016) 0.064(0.014) 0.043(0.008)

Avg-DC Precision 0.046(0.006) 0.031(0.002) 0.025(0.001) 0.117(0.028) 0.061(0.011) 0.039(0.004) 0.235(0.086) 0.118(0.036) 0.065(0.012)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.232(0.016) 0.230(0.011) 0.227(0.008) 0.156(0.013) 0.153(0.010) 0.148(0.007) 0.117(0.014) 0.114(0.009) 0.107(0.007)

TABLE III: The ℓ2-error, precision, and recall of the DHSQR,
Pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the heteroscedastic
error case. The quantile level is fixed τ = 0.3 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

n 200 500 1000

N 5000 10000 20000 5000 10000 20000 5000 10000 20000

DHSQR Precision 0.966(0.072) 0.954(0.119) 0.971(0.084) 0.976(0.079) 0.971(0.058) 1.000(0.001) 0.931(0.119) 0.993(0.032) 0.993(0.032)

Recall 1.000(0.030) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.193(0.254) 0.143(0.167) 0.128(0.131) 0.075(0.032) 0.067(0.026) 0.051(0.025) 0.070(0.024) 0.053(0.017) 0.052(0.015)

Pooled DHSQR Precision 0.979(0.057) 0.996(0.023) 1.000(0.001) 0.973(0.068) 0.996(0.023) 1.000(0.001) 0.979(0.057) 0.996(0.023) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.065(0.014) 0.057(0.021) 0.050(0.011) 0.062(0.016) 0.057(0.021) 0.049(0.011) 0.061(0.015) 0.057(0.021) 0.048(0.011)

DPQR Precision 0.943(0.158) 0.948(0.109) 0.977(0.098) 0.937(0.086) 0.997(0.020) 1.000(0.001) 0.943(0.138) 0.978(0.057) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.278(0.055) 0.196(0.048) 0.135(0.045) 0.201(0.012) 0.139(0.009) 0.094(0.008) 0.114(0.016) 0.081(0.033) 0.121(0.007)

DREL Precision * 0.977(0.086) 0.974(0.082) 0.982(0.048) 1.000(0.001) 0.996(0.023) 0.996(0.023) 0.996(0.023) 1.000(0.001)

Recall * 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error * 0.201(0.173) 0.195(0.168) 0.147(0.069) 0.124(0.065) 0.108(0.046) 0.115(0.043) 0.110(0.037) 0.090(0.028)

Avg-DC Precision 0.053(0.009) 0.034(0.003) 0.026(0.002) 0.130(0.033) 0.068(0.012) 0.042(0.004) 0.266(0.105) 0.133(0.038) 0.072(0.013)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.175(0.012) 0.174(0.009) 0.170(0.008) 0.111(0.010) 0.108(0.008) 0.103(0.005) 0.086(0.011) 0.083(0.009) 0.077(0.005)

TABLE IV: The ℓ2-error, precision, and recall of the DHSQR,
Pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the homoscedastic
error case. The quantile level is fixed τ = 0.5 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

n 200 500 1000

N 5000 10000 20000 5000 10000 20000 5000 10000 20000

DHSQR Precision 0.901(0.147) 0.947(0.119) 0.969(0.077) 0.935(0.136) 0.901(0.159) 0.984(0.079) 0.913(0.177) 0.940(0.086) 0.961(0.101)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.131(0.064) 0.114(0.074) 0.070(0.038) 0.090(0.025) 0.080(0.023) 0.050(0.018) 0.088(0.025) 0.070(0.016) 0.050(0.016)

Pooled DHSQR Precision 0.874(0.18) 0.943(0.095) 0.997(0.02) 0.903(0.158) 0.949(0.095) 0.991(0.034) 0.903(0.164) 0.944(0.099) 0.994(0.028)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.086(0.019) 0.066(0.016) 0.046(0.009) 0.086(0.019) 0.066(0.016) 0.046(0.009) 0.087(0.019) 0.066(0.016) 0.045(0.009)

DPQR Precision 0.929(0.141) 0.956(0.103) 0.985(0.057) 0.935(0.139) 0.923(0.131) 0.970(0.080) 0.957(0.085) 0.918(0.118) 0.988(0.058)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.149(0.182) 0.119(0.118) 0.104(0.14) 0.098(0.045) 0.092(0.040) 0.086(0.068) 0.101(0.044) 0.077(0.029) 0.063(0.024)

DREL Precision 0.922(0.144) 0.991(0.034) 0.991(0.034) 0.853(0.141) 0.991(0.034) 0.994(0.028) 0.842(0.122) 0.994(0.028) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 0.058(0.009) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.094(0.017) 0.060(0.011) 0.044(0.008) 0.085(0.015) 0.061(0.011) 0.040(0.007) 0.084(0.015) 0.060(0.011) 0.040(0.007)

Avg-DC Precision 0.043(0.005) 0.029(0.002) 0.025(0.001) 0.106(0.028) 0.058(0.009) 0.038(0.006) 0.196(0.075) 0.115(0.025) 0.066(0.011)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 0.058(0.009) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.219(0.014) 0.216(0.011) 0.213(0.007) 0.148(0.012) 0.144(0.01) 0.140(0.008) 0.112(0.013) 0.108(0.009) 0.102(0.007)

TABLE V: The ℓ2-error, precision, and recall of the DHSQR,
Pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the heteroscedastic
error case. The quantile level is fixed τ = 0.5 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

n 200 500 1000

N 5000 10000 20000 5000 10000 20000 5000 10000 20000

DHSQR Precision 0.901(0.160) 0.941(0.118) 0.979(0.061) 0.943(0.10) 0.936(0.129) 0.981(0.055) 0.961(0.100) 0.947(0.116) 0.978(0.072)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.180(0.133) 0.157(0.107) 0.125(0.075) 0.092(0.025) 0.081(0.027) 0.059(0.018) 0.088(0.022) 0.065(0.02) 0.050(0.014)

Pooled DHSQR Precision 0.937(0.191) 0.983(0.047) 1.000(0.001) 0.933(0.110) 0.984(0.052) 1.000(0.001) 0.920(0.130) 0.980(0.050) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.083(0.018) 0.058(0.015) 0.043(0.011) 0.083(0.018) 0.058(0.015) 0.043(0.011) 0.083(0.018) 0.057(0.016) 0.043(0.011)

DPQR Precision 0.969(0.060) 0.936(0.128) 0.969(0.084) 0.970(0.060) 0.946(0.087) 0.978(0.073) 0.950(0.110) 0.943(0.105) 0.994(0.028)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.173(0.185) 0.165(0.172) 0.143(0.155) 0.155(0.112) 0.093(0.046) 0.061(0.04) 0.135(0.087) 0.079(0.036) 0.057(0.025)

DREL Precision 0.939(0.120) 0.920(0.107) 0.967(0.080) 0.950(0.100) 0.968(0.073) 0.997(0.02) 0.921(0.110) 0.984(0.052) 0.997(0.020)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.192(0.110) 0.184(0.100) 0.159(0.074) 0.146(0.037) 0.127(0.06) 0.107(0.036) 0.119(0.034) 0.103(0.027) 0.091(0.031)

Avg-DC Precision 0.049(0.010) 0.032(0.002) 0.025(0.001) 0.112(0.030) 0.062(0.011) 0.04(0.004) 0.221(0.080) 0.125(0.028) 0.071(0.013)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.203(0.017) 0.201(0.011) 0.199(0.008) 0.126(0.015) 0.125(0.011) 0.121(0.007) 0.092(0.016) 0.090(0.010) 0.085(0.008)

TABLE VI: The ℓ2-error, precision, and recall of the DHSQR,
Pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the homoscedastic
error case. The quantile level is fixed τ = 0.7 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

n 200 500 1000

N 5000 10000 20000 5000 10000 20000 5000 10000 20000

DHSQR Precision 0.943(0.105) 0.951(0.118) 0.978(0.072) 0.981(0.055) 0.962(0.096) 0.994(0.028) 0.956(0.11) 0.977(0.088) 0.994(0.028)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.140(0.092) 0.107(0.053) 0.084(0.063) 0.095(0.021) 0.072(0.026) 0.056(0.014) 0.095(0.020) 0.067(0.022) 0.053(0.011)

Pooled DHSQR Precision 0.949(0.110) 0.955(0.102) 1.000(0.001) 0.956(0.096) 0.958(0.101) 1.000(0.001) 0.957(0.098) 0.959(0.102) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.094(0.021) 0.067(0.018) 0.050(0.012) 0.094(0.021) 0.066(0.019) 0.049(0.011) 0.095(0.02) 0.065(0.018) 0.050(0.012)

DPQR Precision 0.997(0.020) 1.000(0.001) 1.000(0.001) 0.994(0.028) 0.997(0.020) 1.000(0.001) 0.985(0.057) 0.986(0.048) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.201(0.018) 0.144(0.011) 0.099(0.009) 0.140(0.015) 0.100(0.010) 0.068(0.007) 0.101(0.015) 0.074(0.013) 0.051(0.010)

DREL Precision 0.951(0.083) 0.997(0.020) 0.997(0.020) 0.896(0.129) 0.997(0.020) 1.000(0.001) 0.901(0.107) 0.997(0.020) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.098(0.021) 0.063(0.015) 0.050(0.011) 0.094(0.019) 0.062(0.014) 0.044(0.008) 0.09(0.018) 0.061(0.014) 0.044(0.008)

Avg-DC Precision 0.048(0.006) 0.031(0.002) 0.025(0.001) 0.105(0.028) 0.063(0.011) 0.038(0.005) 0.218(0.069) 0.116(0.029) 0.065(0.013)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.234(0.015) 0.231(0.011) 0.226(0.008) 0.155(0.014) 0.151(0.011) 0.147(0.008) 0.119(0.015) 0.112(0.01) 0.107(0.007)

TABLE VII: The ℓ2-error, precision, and recall of the DHSQR,
Pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the heteroscedastic
error case. The quantile level is fixed τ = 0.7 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

n 200 500 1000

N 5000 10000 20000 5000 10000 20000 5000 10000 20000

DHSQR Precision 0.947(0.116) 0.948(0.100) 0.974(0.069) 0.965(0.098) 0.974(0.069) 0.997(0.020) 0.926(0.15) 0.989(0.081) 0.997(0.020)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.239(0.144) 0.174(0.054) 0.177(0.102) 0.169(0.033) 0.134(0.032) 0.117(0.021) 0.159(0.028) 0.122(0.022) 0.113(0.019)

Pooled DHSQR Precision 0.964(0.102) 0.985(0.057) 1.000(0.001) 0.959(0.107) 0.983(0.064) 1.000(0.001) 0.974(0.069) 0.985(0.057) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.152(0.024) 0.118(0.017) 0.107(0.017) 0.152(0.025) 0.118(0.017) 0.106(0.017) 0.153(0.024) 0.118(0.018) 0.107(0.017)

DPQR Precision 0.994(0.028) 1.000(0.001) 1.000(0.001) 0.991(0.034) 1.000(0.001) 1.000(0.001) 0.980(0.050) 1.000(0.001) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.329(0.013) 0.238(0.007) 0.171(0.007) 0.291(0.014) 0.210(0.007) 0.152(0.009) 0.222(0.012) 0.159(0.008) 0.118(0.011)

DREL Precision 0.923(0.125) 0.976(0.067) 0.983(0.047) 0.934(0.083) 0.977(0.053) 1.000(0.001) 0.962(0.073) 0.977(0.053) 1.000(0.001)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.229(0.066) 0.207(0.068) 0.198(0.052) 0.184(0.032) 0.166(0.04) 0.153(0.036) 0.159(0.023) 0.15(0.024) 0.141(0.025)

Avg-DC Precision 0.05(0.006) 0.032(0.002) 0.025(0.001) 0.114(0.025) 0.065(0.012) 0.040(0.005) 0.207(0.07) 0.117(0.029) 0.066(0.011)

Recall 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001) 1.000(0.001)

ℓ2-error 0.278(0.02) 0.275(0.015) 0.271(0.008) 0.187(0.019) 0.183(0.016) 0.181(0.008) 0.150(0.020) 0.144(0.016) 0.141(0.008)
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TABLE IX: The ℓ2-error, precision, and recall of the DHSQR,
pooled DHSQR, DPQR, DREL, and Avg-DC estimator under
different sample size N and local sample size n. Noises are
generated from a normal distribution for the heteroscedastic
error case. The quantile level is fixed τ = 0.7 and the
iteration is fixed T = 10. (The standard deviation is given
in parentheses.)

N 5000 10000 20000

DHSQR
F1-score 0.881(0.082) 0.893(0.037) 0.904(0.029)

ℓ2-error 0.159(0.021) 0.136(0.032) 0.125(0.031)

Pooled DHSQR
F1-score 0.897(0.034) 0.901(0.023) 0.909(0.001)

ℓ2-error 0.144(0.020) 0.120(0.017) 0.102(0.016)

DREL
F1-score 0.892(0.045) 0.906(0.015) 0.906(0.020)

ℓ2-error 0.181(0.035) 0.158(0.034) 0.152(0.039)

DPQR
F1-score 0.878(0.071) 0.909(0.009) 0.909(0.001)

ℓ2-error 0.176(0.011) 0.146(0.002) 0.137(0.007)

Avg-DC
F1-score 0.179( 0.047) 0.105(0.023) 0.066(0.007)

ℓ2-error 0.184(0.018) 0.182(0.013) 0.180(0.009)

limitations, we report the Normal noise case as an example.
The results are shown in Table VIII.

TABLE VIII: F1-score and ℓ2-error of DHSQR under different
bandwidth constants ch, cb. (The standard deviation is given
in parentheses.)

ch = 1 ch = 2 ch = 5 ch = 10

F1-score ℓ2-error F1-score ℓ2-error F1-score ℓ2-error F1-score ℓ2-error

cb = 1 0.991 (0.032) 0.077 (0.032) 0.991 (0.032) 0.077 (0.032) 0.991 (0.032) 0.077 (0.032) 0.991 (0.032) 0.077 (0.032)

cb = 2 0.951 (0.068) 0.260 (0.081) 0.951 (0.068) 0.260 (0.081) 0.951 (0.068) 0.260 (0.081) 0.951 (0.068) 0.260 (0.081)

cb = 5 0.996 (0.023) 1.856 (1.084) 0.996 (0.023) 1.856 (1.084) 0.996 (0.023) 1.856 (1.084) 0.996 (0.023) 1.856 (1.084)

cb = 10 1.000 (0.020) 5.666 (1.399) 1.000 (0.020) 5.666 (1.399) 1.000 (0.020) 5.666 (1.399) 1.000 (0.020) 5.666 (1.399)

Table VIII shows that our estimator DHSQR is sensitive
only to the local bandwidth b and not to the global bandwidth.
Therefore, even under a suboptimal choice of the global
bandwidth constant ch, the distributed REL still achieves a
small ℓ2-error and high support recovery accuracy. These
results further suggest selecting a smaller local bandwidth
constant cb.

E. Experiments for the Decaying Sequence Setting of Nonzero
Parameters

In this section, we provide some additional experiment
results using the decaying sequence setting of nonzero param-
eters. We consider the heteroscedastic error case with normal
distribution, and τ = 0.7, n = 500, T = 10. Here, we set the
true parameter as

β∗ = (1, 21, 20, 2−1, 2−2, 2−3,0p−5)
T.

Other settings align with those in Section VII. The average
results from 100 replicates are summarized in Table IX.

As depicted in Table IX, our DHSQR method consistently
outperforms other methods across all sample sizes under the
decaying sequence setting. DHSQR demonstrates superior
performance in terms of ℓ2-error, indicating its capability to

TABLE X: The F1 score, ℓ2 error, and Time computation
of five estimators under different total sample sizes N . (The
standard deviation is given in parentheses.)

N DHSQR Pooled DHSQR

F1-score ℓ2-error Time F1-score ℓ2-error Time

5000 0.961(0.121) 0.126(0.018) 0.122(0.029) 0.851(0.132) 0.113(0.032) 0.877(0.115)

10000 0.941(0.074) 0.069(0.021) 0.130(0.024) 0.991(0.032) 0.060(0.014) 1.671(0.080)

15000 0.984(0.043) 0.068(0.030) 0.143(0.017) 0.981(0.072) 0.055(0.015) 2.500(0.094)

20000 0.991(0.031) 0.055(0.024) 0.151(0.020) 0.991(0.017) 0.058(0.016) 3.393(0.140)

N DPQR DREL

F1-score ℓ2-error Time F1-score ℓ2-error Time

5000 0.996(0.001) 0.126(0.061) 0.193(0.033) 0.862(0.152) 0.189(0.065) 1.006(0.095)

10000 0.996(0.002) 0.097(0.056) 0.189(0.010) 0.972(0.621) 0.131(0.072) 1.768(0.034)

15000 0.997(0.002) 0.088(0.052) 0.208(0.020) 0.991(0.052) 0.119(0.053) 2.622(0.166)

20000 1.000(0.001) 0.081(0.050) 0.223(0.030) 0.992(0.053) 0.117(0.042) 3.471(0.126)

N Avg-DC

F1-score ℓ2-error Time

5000 0.199(0.052) 0.126(0.015) 31.780(2.884)

10000 0.122(0.022) 0.125(0.011) 59.576(5.125)

15000 0.094(0.011) 0.126(0.008) 93.553(7.594)

20000 0.084(0.011) 0.121(0.007) 117.129(11.709)

provide more accurate estimations compared to alternative
methods. Additionally, the DHSQR method achieves an in-
distinguishable F1-score when compared to other iteration
methods, reaffirming its strength and reliability.

F. Computation Time Comparison

We further study the computation efficiency of our proposed
estimator. We fix the local sample size n = 500 and vary
the total sample size N . In Table X, we report the F1 score,
ℓ2 error, and computation time (per iteration) with different
the total sample sizes N under the heteroscedastic error case.
As is shown in Table X, We can see that our DHSQR has
the fastest single iteration time, followed by DPQP, which
maintains the same order of magnitude, then DREL and
Pooled DHSQR, REL, and Pooled DHSQR maintain the same
order of magnitude, and Avg-DC is the slowest.

G. Distribued Inference Performance

In this section, we evaluate the effectiveness of the debi-
ased DHSQR estimator across different scenarios. We present
the distribution of test statistics under the null hypothesis,
quantile-quantile (Q-Q) plots, empirical cumulative distribu-
tion functions (CDFs) of p-values, and power curves for
hypothesis testing. Data is generated from both homoscedastic
(Model 1) and heteroscedastic (Model 2) cases with various
error distributions. For simplicity, we fix the total sample size
N = 20000, the number of machines m = 20 and vary
the quantile level τ = {0.3, 0.5, 0.7},. For DHSQR point
estimation, we implement Algorithm 1 with T = 10 iterations.

In Figure 3, we present the distributions of zj =√
N(β̃T0,h,j−β∗

j )√
τ(1−τ)[Ŵ

(1)
b Σ̂

(1)
Ŵ

(1)
b ]

1/2
j,j

for j ∈ {2, 5, 500} under the null

hypothesis across various scenarios. These histograms reveal
that zj closely approximates a standard normal distribution,
regardless of noise type, even when the stochastic error fol-
lows an extremely heavy-tailed distribution. Our test statistics
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Heteroscedasticity (τ = 0.3)

Heteroscedasticity (τ = 0.5)

Heteroscedasticity (τ = 0.7)

Homoscedasticity (τ = 0.3)

Homoscedasticity (τ = 0.5)

Homoscedasticity(τ = 0.7)

Fig. 3: Histograms of the standardized test estimator√
n(β̃j−β∗

j )√
τ(1−τ)[Ŵ

(1)
b

Σ̂
(1)

Ŵ
(1)
b

]
1/2
j,j

at τ = {0.3, 0.5, 0.7}, under different

noises (m = 20, N = 20000). Rows correspond to Normal, t, and
Cauchy noises, columns correspond to β2 = 2, β5 = 5, β500 = 0.

,

exhibit consistent performance for both large and small signal
strengths. The Q-Q plots in Figure 4 further illustrate the
relationship between the sample quantiles of zj and the quan-
tiles of the standard normal distribution. The close alignment
of points with the line y = x confirms the asymptotic nor-
mality of our test statistics, supporting the theoretical results
established in Section V. It is evident that both the sparse
coefficient and non-coefficient coordinate debiased estimates
exhibit normal-like properties across different quantile levels.

Figure 5 illustrates the empirical cumulative distribution
functions (CDFs) of the p-values for z20, focusing specifically
on variables outside the support set. As theoretically antic-
ipated, these p-values follow a nearly uniform distribution,
confirming the validity of our hypothesis testing procedure.
When examining different error distributions, we observe that
while the empirical CDFs closely track the theoretical diagonal
line under normal errors, there are slight deviations under
heavy-tailed conditions such as t3 and Cauchy distributions.
Nevertheless, these empirical CDFs remain reasonably close
to the expected uniform distribution, demonstrating the robust-
ness of our inference method even in challenging scenarios
with extreme noise.

Heteroscedasticity (τ = 0.3)

Heteroscedasticity (τ = 0.5)

Heteroscedasticity (τ = 0.7)

Homoscedasticity(τ = 0.3)

Homoscedasticity(τ = 0.5)

Homoscedasticity(τ = 0.7)

Fig. 4: QQ plots of the standardized test estimator√
n(β̃j−β∗

j )√
τ(1−τ)

[
Ŵ

(1)
b

Σ̂
(1)

Ŵ
(1)
b

]1/2
j,j

under at τ = {0.3, 0.5, 0.7}, under

different noises (m = 20, N = 20000). Rows correspond
to Normal, t, and Cauchy noises, columns correspond to
β2 = 2, β5 = 5, β500 = 0.

We also present power curves for testing the null hypotheses
H0,1 : β1 = 1 in Figure 6 and H0,100 : β100 = 0 in Figure
7 across different quantile levels τ = 0.5 and under both
homoscedastic and heteroscedastic error settings. As shown in
the figures, the tests achieve high power within a narrow range
of the parameter values. While the power curves rise rapidly
under N(0, 1) noise, those under heavy-tailed distributions
exhibit a noticeable delay, reflecting the additional challenges
posed by extreme noise conditions.

VIII. REAL DATA ANALYSIS

In this section, we employ the proposed DHSQR algorithm
to analyze the drug sensitivity data of the Human Immunod-
eficiency Virus (HIV) [56], [57]. This data is sourced from
the Stanford University HIV Drug Resistance Database (http:
//hivdb.stanford.edu). Efavirenz (EFV) is the preferred first-
line antiretroviral drug for HIV and belongs to the category
of selective non-nucleoside reverse transcriptase inhibitors

http://hivdb.stanford.edu
http://hivdb.stanford.edu
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Heteroscedasticity
τ = 0.3

τ = 0.5

τ = 0.7

Homoscedasticity
τ = 0.3

τ = 0.5

τ = 0.7

Fig. 5: Empirical CDF of p-values w.r.t. z20 (restricted to
entries out of the support set) under Normal, t, and Cauchy
noises for Heteroscedastic and Homoscedastic cases with
(N,m, p) = (20000, 40, 500) at τ = {0.3, 0.5, 0.7}.

Fig. 6: Power curves of testing the null H0,1 : β∗
1 =

1 under Normal, t, and Cauchy noises with (N,m, p) =
(20000, 40, 500).

(NNRTIs) for subtype 1 HIV. We investigate the impact of
mutations at different positions on EFV drug sensitivity. After
excluding some missing records, our initial dataset comprises
N = 2046 HIV isolates and p = 201 viral mutation positions.
We define the response variable y for regression as the drug
sensitivity of the samples, which quantifies the fold reduction
in susceptibility of a single virus isolate compared to a control
isolate [57]. The covariate x indicates whether the virus has
mutated at different positions (x = 1 for mutation, x = 0
for no mutation). Due to the heavy-tailed distribution of
the response variable, we apply a logarithmic transformation,
transforming it into log10 y. Histograms of both the initial
response variable and the transformed response variable are
shown in Figure 8. Even after the transformation, the re-
sponse variable remains non-normally distributed. Therefore,
we employ quantile regression for data analysis, which is more
robust than linear regression. Additionally, it’s important to
note that while the dataset is not large in size, sensitivity data
are typically distributed across different hospitals in practical
scenarios, making data aggregation challenging. In such cases,
distributed quantile regression algorithms become a suitable

Fig. 7: Power curves of testing the null H0,100 : β∗
100 =

0 under Normal, t, and Cauchy noises with (N,m, p) =
(20000, 40, 500).

choice.

Fig. 8: The left figure represents the histogram of the initial
drug sensitivity variable distribution, while the right figure
represents the histogram of the drug sensitivity variable dis-
tribution after undergoing a logarithmic transformation.

In the experimental setup, we randomly selected a training
dataset with a sample size of Ntr = 1500, a validation dataset
with a sample size of Nva = 300 to select the optimal
penalty parameter λ, and the remaining data served as the
test dataset, which had a sample size of Nte = 246. Typically,
our interest lies in drug sensitivity at higher quantile levels
since it is associated with stronger resistance [57], enabling
the development of better treatment strategies. Therefore, in
the experiments, we chose quantile levels τ ∈ 0.5, 0.75, 0.9.
We employed the same comparative methods as in Section VII
to evaluate our algorithm. To assess the performance of each
estimator, we computed the Predicted Quantile Error (PQE)
on the prediction dataset, defined as

PQE =

nte∑
i=1

ρτ (yi − ŷi), i = 1, . . . , 246,

where ŷi represents the predictions made by each model.
The results of the five different methods at quantile levels
τ ∈ {0.5, 0.75, 0.9} are presented in Table XI. From the
results, it can be observed that our DHSQR estimator exhibits
smaller prediction errors compared to other distributed esti-
mators and is very close to the performance of the single ma-
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chine estimator, Pooled DHSQR. This further underscores the
method’s excellent performance on HIV data. It is noteworthy
that the performance of the DREL estimator is even worse
than the one-step Avg-DC estimator, indicating the presence
of heteroscedasticity in the data. Clearly, the DREL algorithm
is not suitable for analyzing this type of data.

TABLE XI: The results of the Predicted Quantile Error (PQE)
for different estimators at quantile levels τ ∈ {0.5, 0.75, 0.9}
.

Quantile Level DHSQR Pooled DHSQR DREL DPQR Avg-DC

τ = 0.5 0.205 0.201 0.241 0.226 0.225

τ = 0.75 0.193 0.189 0.278 0.213 0.211

τ = 0.9 0.176 0.172 0.329 0.186 0.232

Furthermore, to analyze the performance differences of
various distributed algorithms in variable selection, we present
the results of their predictions of non-zero coefficients at
quantile levels τ ∈ {0.5, 0.75, 0.9} in Table XII. We ob-
served that, apart from the Avg-DC algorithm, all the multi-
round communication-based distributed algorithms were able
to select fewer variables than the total number, p = 201. As
the quantile level increases, the DHSQR algorithm selects an
increasing number of non-zero coefficients, going from 24 to
35. This suggests that more virus positions have an impact on
resistance at higher quantile levels.

TABLE XII: The results of the number of selected non-
zero coefficients for different estimators at quantile levels
τ ∈ {0.5, 0.75, 0.9}.

Quantile Level DHSQR Pooled DHSQR DREL DPQR Avg-DC

τ = 0.5 24 24 26 24 41

τ = 0.75 29 29 31 29 63

τ = 0.9 35 35 36 35 81

IX. CONCLUSION

In this paper, we propose an efficient distributed quantile
regression method for dealing with heterogeneous data. By
constructing a kernel-based pseudo covariate and response, we
transform the non-smooth quantile regression problem into a
smooth least squares problem. Based on this procedure, we
establish a double-smoothing surrogate likelihood framework
to facilitate distributed learning. An efficient algorithm is
developed, which enjoys computation and communication effi-
ciency. We also investigate the inference problem in distributed
high-dimensional quantile regression based on the debiased
procedure. Confidence intervals and hypothesis tests are con-
structed for the quantile regression coefficients. Theoretically,
for the distributed estimation, we provide the convergence
rate and support recovery of the proposed DHSQR estima-
tor. For the distributed inference, we establish the Bahadur
representation, the non-asymptotic Berry-Esseen bound, and
the asymptotic normality of the debiased DHSQR estimator,
which guarantee the validity of confidence interval construc-
tion and hypothesis testing. The empirical studies demonstrate

the effectiveness of the proposed method in terms of estimation
and inference. Future work includes developing decentralized
algorithms for estimation and inference in quantile regression
over networked data, extending prior approaches to online
quantile estimation and sensor-network frameworks [58], [59].
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