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Molecule Representations

* Understanding properties of molecules i1s important in a variety of applications
* Drug discovery, material discovery

* Molecule representations
1D SMILES

* 2D Molecular graphs

* A more natural and intrinsic representations: 3D conformations
* Determines its biological and physical activities
* E.g., charge distribution, steric constraints, and interaction with other molecules

C1CO H. . .C

1D SMILES 2D Graph 3D Conformation



Conformation Prediction

* For most molecules, their 3D structure are not available

* How to predict valid and stable conformations?
* Each atom is represented as its 3D coordinates



Traditional Approaches

* Experimental methods

* Crystallography

* Expensive and time consuming
* Computational methods

* Molecular dynamics, Markov chain Monte Carlo
* Very computational expensive, especially for large molecules



Machine Learning Approaches

* Train a model to predict molecular conformations R given the molecular graph G,
i.e., modeling p(R|G) (Mansimov et al. 2019, Stmm and Hernandez-
Lobato 2020)

* Challenges
* Conformations are rotation and translation equivalent
 The distribution p(R|G) is multimodal and very complex




Our Solution

* A flexible generative model pg (R|G) based on normalizing flows
* Treating pairwise distances d as intermediate variables
* First generating the distance d based G, i.e.pg(d|G)
* Generating conformations based on d and G, 1.e. pg(R|d, G)

po(RIG) = [ p(RId,G) - pa(d|G) dd

* Further correct pg (R|G) with an energy-based tilting term E (R, G)

Po,¢(R|G) o< po(R|G) - exp(—FEy(R,G))



Normalizing Flows

* Defines an invertible mapping y = f(x) from a base distribution to a
complex distribution

Base density Transformed density
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* Change-of-variable theorem
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Distance Geometry Generation po(d|9)
* Conditional Graph Continuous Flow (CGCF)

* Defines an invertible mapping between a base distribution and the pairwise
atom distance d conditioning on the molecular graph G

* Defines the continuous dynamics of distance d with Neural Ordinary
Differential Equations (ODEs):

d = Fy(d(t),G) = d(to) + /tl
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Conformation Prediction »(rd, )

* Defines the distribution of conformation R given the molecular graph
G and the pairwise atom distance d

p(R|d,G) = —exp{ Z oy (|70 — Toll2 — duo) }

* Trying to find the conformations R that satisfy the distance constraints

peo(d|G) p(R[d,G)
cla Predict distances for Search 3D coordinates
H ¢C\H b the input graph. given the distances.
Input Graph
Flow Gradient , 1
Dynamics Descent "
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Energy-based Tilting Model

* Further correct pg (R|G) with an energy-based tilting term E (R, G)
Po.¢(R|G) x pg(R|G) - exp(—Ey(R, G))

» Explicitly learn an energy function E4(R, G) with SchNet (Schiitt et al. 2017)

* Neural message passing in 3D space

g % | > SchNet | > Energy
g G (Schiitt et al. 2017)




Training Energy Model

* Directly training EBMs with maximum likelihood 1s difficult
* Involving a slow sampling process from the model distribution (e.g. with
Langevin dynamics)
* Training EBMs with negative sampling
* Treating observed conformations as positive examples
* Generating negative conformations through the flow-based model pg (R|§)

1
1+ exp(Ey (R, G))

: |
1+ exp(—Ey(R,G))

Lice(R,G;¢) == — Epg,.., [log } — Ky, [log
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The Final Sampling Process:
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Experiments

e Data Sets

* GEOM: > 33 million molecular conformers by Rafael’s group, including both
small molecules in QM9 and medium-sized drug-like molecules.

* ISO17: built on QM9, including 197 molecules, each with 5000 conformations

 Baselines

* CVGAE(Mansimov et al. 2019): learning atom representations with GNNs
and then predict the coordinates of atoms

* GraphDG(Simm&Hernandez-Lobato, 2020): predicting the pairwise
distances between atoms with GNNs and then generate conformers based on
distances

* RDKit: a classical force field in molecular dynamics
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Examples

Conformations
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Conformation Generation

* Evaluate the quality and diversity of generated conformations.

* Coverage (COYV): the fraction of conformations in the reference set
that are matched by at least one conformation in the generated
conformations

COV(S4(9),5:(9)) =

/ /
s {R € S,|RMSD(R, R') < 6, R € Sg}

* Matching (MAT): measure the average distance of the reference
conformations with their nearest neighbors 1n the generated
conformations

MAT(SQ(Q)a 'r'

Z min RMSD R R
SPIY- 15



Results

Dataset GEOM-QM9 GEOM-Drugs
Metric COV* (%) MAT (A) COV* (%) MAT (A)
Mean Median Mean Median | Mean Median Mean  Median
CVGAE 8.52 5.62 0.7810 0.7811 0.00 0.00 2.5225 2.4680
GraphDG 55.09 56.47 0.4649 0.4298 7.76 0.00 1.9840 2.0108
CGCF 69.60 70.64 0.3915 0.3986 | 49.92 41.07 1.2698 1.3064
CGCF + ETM 72.43 74.38 0.3807 0.3955 | 53.29 47.06 1.2392 1.2480
RDKit 79.94 87.20 0.3238 0.3195 | 65.43 70.00 1.0962  1.0877
CVGAE + FF 63.10 60.95 0.3939 0.4297 | 83.08 95.21 0.9829 09177
GraphDG + FF 70.67 70.82 0.4168 0.3609 | 84.68 93.94 0.9129 0.9090
CGCF + FF 73.52 72.75 0.3131 0.3251 | 92.28 98.15 0.7740 0.7338
CGCF + ETM + FF | 73.54 72.58 0.3088 0.3210 | 92.41 98.57 0.7737 0.7616

* For the reported COV score, the threshold ¢ is set as 0.5A for QM9 and 1.25A for Drugs. More

results of COV scores with different threshold o are given in Appendix H.

Refined by classical
Merck Molecular
Force Field (MMFF)



Distribution over Pairwise Distances

» Evaluate the distribution of the pairwise distance between atoms for
each molecular graph |
« Marginal distribution p(d,,|G)
* Pairwise distribution p(dyy, d;;|G)
e Joint distribution p(d|G)

* Evaluation Metrics: maximum mean discrepancy (MMD) between the
distributions over the reference set and the generated set
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Results

Single Pair All
Mean Median Mean Median Mean  Median
RDKit 34513 3.1602 3.8452 3.6287 4.0866 3.7519
CVGAE 4.1789 4.1762 49184 5.1856 5.9747 5.9928
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447
CGCF+ETM 05703 0.2411 0.6901 03482 1.0706 0.5411

ETM slights hurts the performance as it will sharpen the distribution
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Conclusion

* Molecule representations: moving from 2D graphs to 3D
conformations

* Predicting molecular conformations 1s challenging
* Multimodal

* A normalizing flow and energy model based framework
* A flexible flow-based model for conformation generation
* Energy model 1s further used for correcting the flow model

* Future work
* Integrating the physic model
* Other tasks such as protein structure prediction



Machine Learning-based Approaches

* Train a model to predict molecular conformations R given the molecular graph G,
i.e., modeling p(R|G)
* Deep Generative Graph Neural Network (Mansimov et al. 2019)
* Learning atom representations with graph neural networks
* Predicting atom coordinates based on atom representations

* Limitations
* Conformations are rotation and translation equivalent
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A Generative Model for Molecular Distance
Geometry (Simm and Hernandez-Lobato 2020)

* Two stage generation: distance geometry generation and conformation generation
* The distances between atoms are rotation and translation equivalent

* Predict the conformations based on molecular graph and distances
* Distance prediction

* Graph neural networks are used to learn the edge representations
* Predict the edges based on edge representations

mmmmmmm

Euclidean Distance
G " Geometry algorithm

Augmented Molecular Graph Graph Neural Networks Edge Representations Distances Conformations
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Limitations

* The model capacity is still very limited

* The distribution p(R|G) is multimodal
* Each molecule could have multiple stable conformations

 We need to find more flexible models!!
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