
Deep Generative Models
for Graph Generation

Jian Tang
HEC Montreal

CIFARAI Chair, Mila
Email: jian.tang@hec.ca

Deep Generative Models

• Goal: model data distribution p(x) explicitly or implicitly, where x is a
high-dimensional random variable.
• Images, speech, and natural language

Image Generation
(BigGAN, Brock et al. 2018)

Speech Generation
(WaveNet, Oord, et al. 2016)

Table 8: Examples of fake reviews generated by the gC2S model.
Domain Product Rating Review

Movie “Frozen” 1 i love disney movies but this one was not at all what i expected . the
story line was so predictable , it was dumb .

3 i liked the movie but it didn’t hold my attention as much as i expected .
they just don’t make movies like this anymore .

5 my son loves this movie and it is a good family movie . i would re-
comend it for anyone who likes to watch movies with kids .

Electronic “Leather case
cover for ipad
mini”

1 i bought this case for my ipad 3 . it was not as pictured and it was too
small and the ipad mini was not secured inside it , so i returned it .

3 the case is good for the price , but seems to be of very thin plastic and
not well made . i use the stylus for reading . i would recommend it if
you have a mini ipad .

5 the cover is very good and it fits the ipad mini perfectly and the color is
exactly what i was looking for .

Conclusion

This paper studied context-aware natural language genera-
tion. We proposed two approaches, C2S and gC2S, which
encode the contexts into semantic representations and then
decode the representations into text sequences. The gC2S
model significantly outperforms the C2S model as it adds
skip-connections between the context representations and
the words in the sequences, allowing the information from
the contexts to be able to directly affect the generation of
words. We evaluated our approaches on the user reviews
data. Experimental results show that more than 50% of the
fake reviews generated by our approach are misclassified by
human judges, and more than 90% of the reviews are mis-
classified by existing fake review detection algorithm.

In the future, we plan to integrate more context informa-
tion, e.g., the user, the detailed descriptions of the products,
the product prices, into our approaches and also evaluate our
approaches in other scenarios, e.g., generating the titles of
scientific papers based on the author, venue, and time in-
formation. It may be also beneficial to improve our model
through the attention mechanical (Bahdanau, Cho, and Ben-
gio 2014), i.e., attending to different types of contexts when
generating words in different positions.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefow-
icz, R.; and Bengio, S. 2015. Generating sentences from a
continuous space. arXiv preprint arXiv:1511.06349.
Cao, H.; Hu, D. H.; Shen, D.; Jiang, D.; Sun, J.-T.; Chen, E.;
and Yang, Q. 2009. Context-aware query classification. In
Proceedings of the 32nd international ACM SIGIR confer-

ence on Research and development in information retrieval,
3–10. ACM.
Cheyer, A., and Guzzoni, D. 2014. Method and apparatus
for building an intelligent automated assistant. US Patent
8,677,377.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning

phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.
Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. arXiv preprint arXiv:1308.0850.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Karpathy, A.; Johnson, J.; and Li, F.-F. 2015. Visualiz-
ing and understanding recurrent networks. arXiv preprint

arXiv:1506.02078.
Mei, Q.; Liu, C.; Su, H.; and Zhai, C. 2006. A probabilis-
tic approach to spatiotemporal theme pattern mining on we-
blogs. In Proceedings of the 15th international conference

on World Wide Web, 533–542. ACM.
Mikolov, T., and Zweig, G. 2012. Context dependent recur-
rent neural network language model. In SLT, 234–239.
Oh, A. H., and Rudnicky, A. I. 2000. Stochastic lan-
guage generation for spoken dialogue systems. In Proceed-

ings of the 2000 ANLP/NAACL Workshop on Conversational

systems-Volume 3, 27–32. Association for Computational
Linguistics.
Ott, M.; Choi, Y.; Cardie, C.; and Hancock, J. T. 2011. Find-
ing deceptive opinion spam by any stretch of the imagina-
tion. In Proceedings of the 49th Annual Meeting of the As-

sociation for Computational Linguistics: Human Language

Technologies-Volume 1, 309–319. Association for Compu-
tational Linguistics.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural at-
tention model for abstractive sentence summarization. arXiv

preprint arXiv:1509.00685.
Sordoni, A.; Galley, M.; Auli, M.; Brockett, C.; Ji, Y.;
Mitchell, M.; Nie, J.-Y.; Gao, J.; and Dolan, B. 2015. A
neural network approach to context-sensitive generation of
conversational responses. arXiv preprint arXiv:1506.06714.
Sutskever, I.; Martens, J.; and Hinton, G. E. 2011. Gener-
ating text with recurrent neural networks. In Proceedings

of the 28th International Conference on Machine Learning

(ICML-11), 1017–1024.
Wang, T., and Cho, K. 2015. Larger-context language mod-
elling. arXiv preprint arXiv:1511.03729.
Wen, T.-H.; Gasic, M.; Kim, D.; Mrksic, N.; Su, P.-H.;
Vandyke, D.; and Young, S. 2015a. Stochastic lan-

Natural Language Generation
(Tang et al. 2016)

Applications for Graph GenerationGraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Figure 2. Visualization of graphs from grid dataset (Left group), community dataset (Middle group) and Ego dataset (Right group). Within
each group, graphs from training set (First row), graphs generated by GraphRNN(Second row) and graphs generated by Kronecker,
MMSB and B-A baselines respectively (Third row) are shown. Different visualization layouts are used for different datasets.

Table 1. Comparison of GraphRNN to traditional graph generative models using MMD. (max(|V |),max(|E|)) of each dataset is shown.
Community (160,1945) Ego (399,1071) Grid (361,684) Protein (500,1575)

Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

E-R 0.021 1.243 0.049 0.508 1.288 0.232 1.011 0.018 0.900 0.145 1.779 1.135
B-A 0.268 0.322 0.047 0.275 0.973 0.095 1.860 0 0.720 1.401 1.706 0.920
Kronecker 0.259 1.685 0.069 0.108 0.975 0.052 1.074 0.008 0.080 0.084 0.441 0.288
MMSB 0.166 1.59 0.054 0.304 0.245 0.048 1.881 0.131 1.239 0.236 0.495 0.775

GraphRNN-S 0.055 0.016 0.041 0.090 0.006 0.043 0.029 10�5 0.011 0.057 0.102 0.037
GraphRNN 0.014 0.002 0.039 0.077 0.316 0.030 10�5 0 10�4 0.034 0.935 0.217

are p and q respectively, and � is a valid transport plan.
To capture high-order moments, we use the following ker-
nel, whose Taylor expansion is a linear combination of all
moments (proof in the Appendix):

Proposition 2. The kernel function defined by kW (p, q) =

exp W (p,q)
2�2 induces a unique RKHS.

In experiments, we show this derived MMD score for degree
and clustering coefficient distributions, as well as average
orbit counts statistics, i.e., the number of occurrences of all
orbits with 4 nodes (to capture higher-level motifs) (Hočevar
& Demšar, 2014). We use the RBF kernel to compute
distances between count vectors.

4.4. Generating High Quality Graphs

Our experiments demonstrate that GraphRNN can generate
graphs that match the characteristics of the ground truth
graphs in a variety of metrics.

Graph visualization. Figure 2 visualizes the graphs gen-
erated by GraphRNN and various baselines, showing that
GraphRNN can capture the structure of datasets with vastly
differing characteristics—being able to effectively learn reg-
ular structures like grids as well as more natural structures
like ego networks. Specifically, we found that grids gener-
ated by GraphRNN do not appear in the training set, i.e., it
learns to generalize to unseen grid widths/heights.

Evaluation with graph statistics. We use three graph
statistics—based on degrees, clustering coefficients and or-
bit counts—to further quantitatively evaluate the generated
graphs. Figure 3 shows the average graph statistics in the
test vs. generated graphs, which demonstrates that even from
hundreds of graphs with diverse sizes, GraphRNN can still
learn to capture the underlying graph statistics very well,
with the generated average statistics closely matching the
overall test set distribution.

Tables 1 and 2 summarize MMD evaluations on the full
datasets and small versions, respectively. Note that we train
all the models with a fixed number of steps, and report the
test set performance at the step with the lowest training er-
ror.6 GraphRNN variants achieve the best performance on
all datasets, with 80% decrease of MMD on average com-
pared with traditional baselines, and 90% decrease of MMD
compared with deep learning baselines. Interestingly, on the
protein dataset, our simpler GraphRNN-S model performs
very well, which is likely due to the fact that the protein
dataset is a nearest neighbor graph over Euclidean space and
thus does not involve highly complex edge dependencies.
Note that even though some baseline models perform well
on specific datasets (e.g., MMSB on the community dataset),
they fail to generalize across other types of input graphs.

6Using the training set or a validation set to evaluate MMD
gave analogous results, so we used the train set for early stopping.

Social networks Molecules

Image from You et al. 2018

Three Types of Deep Generative Models

• Variational Autoencoders (VAEs)
• Generative Adversarial Networks (GANs)
• Deep Auto-regressive Models

Variational AutoEncoders (VAEs, Kingma
et al. 2014)
• Latent variable model
• An encoder !" ($|&)
• A decoder () (&|$)

• Maximizing the likelihood log p(&)
• Inference intractable since $ is continuous.

• Maximizing the variational lower-bound ℒ /, 1; 3
• Reparametrization trick for jointly optimizing encoder and decoder

ℒ /, 1; 3
= 567 ($|&) log () & $ − 9:[!" $ & ||(($)]

Reconstruction Regularization

Generative Adversarial Networks (GANs,
Goodfellow et al. 2014)

• A two-player minimax game
• Generator G: z -> x
• Discriminator D: x-> {0,1}

• Discriminator aims to distinguish between
real data and generated data
• Generator aims to fool the discriminator

Image from: https://medium.com/coinmonks/celebrity-face-
generation-using-gans-tensorflow-implementation-eaa2001eef86

G

D

min$ max
'

(), + =-.~01232 . log) . + -8~09 8 log 1 −)(+(8))

https://medium.com/coinmonks/celebrity-face-generation-
https://medium.com/coinmonks/celebrity-face-generation-

Deep Auto-regressive Models (Oort et al.
2016)
• Example of deep auto-regressive model
• Recurrent Neural Networks

• PixelRNN, Pixel CNN (Oord et al. 2016)
• Generate an image pixel by pixel
• A neural network is used to model the

conditional distribution
• WaveNet (Oort et al. 2016)

! " =$
%&'

()

!(+%|+', … , +%/') Figure from WaveNet

Challenges for Graph Generation

• The structures and sizes of graphs are different
• No orders between the nodes
• Discrete

GraphVAE (Simonovsky and Komodakis
2018)
• VAE framework for graph generation

• Graph as input data

• Encoder: graph neural networks + gated pooling => graph representation (Li
et al. 2015)

• Decoder: output a probabilistic fully-connected graph of a predefined
maximum size

• Model the existence of nodes, edges, and their attributes independently

• Graph matching is required

GraphVAE
(Simonovsky and Komodakis 2018)
• Input graph G=(A,E,F)
• A: the adjacency matrix, E: edge attribute tensor, F: node attribute matrix

Image from Simonovsky and Komodakis 2018

Probabilistic Graph Decoder
• Restrict the domain to the set of all graphs on maximum k nodes (k is

around tens)
• Output a probabilistic fully-connected graph !" = (%&, !(, !)) on k nodes at

once
• Model the existence of nodes and edges as Bernoulli variables
• Model the node and edge attributes as Multinomial variables
• %& ∈ 0,1 .×. contains both node probabilities %&00 and edge probabilities %&01 for

nodes 2 ≠b
• !(∈ 0,1 .×.×45 indicates the probabilities for edge attributes
• !) ∈ 0,1 .×46 indicates the probabilities for node attributes

• Inference: taking edge- and node-wise argmax in %&, !(, and !).
• Graph Matching must be used for calculating the reconstruction loss

Limitations

• The max size of the graphs/molecules must be predefined.
• Graph matching is required

JTVAE (Jin et al. 2018)

• Leverage chemical domain knowledge
• Each molecule can be represented a tree-structured scaffold over chemical

substructures (e.g., rings, bonds)

• Generate a tree-structured object
• Represent the scaffold of subgraph components

• Assemble the substructure into a coherent
molecular graph

Figure from Jin et al. 2018

Supplementary Material

A. Tree Decomposition

Algorithm 2 presents our tree decomposition of molecules. V1 and V2 contain non-ring bonds and simple rings respectively.
Simple rings are extracted via RDKit’s GetSymmSSSR function. We then merge rings that share three or more atoms as
they form bridged compounds. We note that the junction tree of a molecule is not unique when its cluster graph contains
cycles. This introduces additional uncertainty for our probabilistic modeling. To reduce such variation, for any of the three
(or more) intersecting bonds, we add their intersecting atom as a cluster and remove the cycle connecting them in the cluster
graph. Finally, we construct a junction tree as the maximum spanning tree of a cluster graph (V, E). Note that we assign an
large weight over edges involving clusters in V0 to ensure no edges in any cycles will be selected into the junction tree.

Algorithm 2 Tree decomposition of molecule G = (V,E)

V1 the set of bonds (u, v) 2 E that do not belong to any rings.
V2 the set of simple rings of G.
for r1, r2 in V2 do

Merge rings r1, r2 into one ring if they share more than two atoms (bridged rings).
end for

V0 atoms being the intersection of three or more clusters in V1 [V2.
V V0 [V1 [V2

E {(i, j, c) 2 V ⇥ V ⇥ R | |i \ j| > 0}. Set c =1 if i 2 V0 or j 2 V0, and c = 1 otherwise.
Return The maximum spanning tree over cluster graph (V, E).

Figure 9. Illustration of tree decomposition and sample of cluster label vocabulary.

B. Stereochemistry

Though usually presented as two-dimensional graphs, molecules are three-dimensional objects, i.e. molecules are defined
not only by its atom types and bond connections, but also the spatial configuration between atoms (chiral atoms and cis-trans
isomerism). Stereoisomers are molecules that have the same 2D structure, but differ in the 3D orientations of their atoms in
space. We note that stereochemical feasibility could not be simply encoded as context free or attribute grammars.

Empirically, we found it more efficient to predict the stereochemical configuration separately from the molecule generation.
Specifically, the JT-VAE first generates the 2D structure of a molecule m, following the same procedure described in
section 2. Then we generate all its stereoisomers Sm using RDKit’s EnumerateStereoisomers function, which
identifies atoms that could be chiral. For each isomer m0 2 Sm, we encode its graph representation hm0 with the graph
encoder and compute their cosine similarity fs(m0) = cos(hm0 , zm) (note that zm is stochastic). We reconstruct the

MolGAN (Cao and Kipf 2018)

• An implicit, likelihood-free generative model for molecule generation
• Combined with reinforcement learning to encourage the generated

molecules with desired chemical properties
• Generator: generating molecules from a prior distribution
• Discriminator: distinguishing the generated samples and real samples
• Reward network:
• Learns to assign a reward to each molecule to match a score provided by an

external software
• Invalid molecules always receive zero rewards.

• A probabilistic fully-connected graph
• ! ∈ #$×&: atom types
• (∈ #$×$×): bond types

• Objective function:

Generator

* + = -*./0$ + 1 − - *45

Discriminator and Reward Network

• Learning molecule/graph representations with a variant of neural
message passing algorithms (Schlichtkrulle et al. 2017)
• Same architectures for discriminator and reward network

• No parameter sharing
• Reward network for approximating the score by an external software

• Trained with real samples and generated samples

Advantages and Limitations

• No graph matching is required
• The max size of the graphs/molecules must be predefined.

GCPN: Graph Convolutional Policy
Network (You et al. 2018)
• Molecule generation as sequential decisions
• Add nodes and edges
• A Markov decision process

• Goal: discover molecules that optimize desired properties while
incorporating chemical rules.
• GCPN: A general model for goal-directed graph generation with RL
• Optimize adversarial loss and domain-specific rewards with policy gradients
• Acts in an environment that incorporates domain-specific rules.

Graph Generation as MDP
• ! = #,%,&,ℛ, (
• States # =)* : consists of all possible intermediate and final graphs
• Actions % = ,* : modification made to the current graph at each step
• State Transitional dynamics &:
• Reward function ℛ
• Discount factor (

and policy gradient respectively. Guimaraes et al. [27] and Sanchez-Lengeling et al. [34] further
included an adversarial loss to the reinforcement learning reward to enforce similarity to a given
molecule dataset. In contrast, instead of using a text-based molecular representation, our approach
uses a graph-based molecular representation, which leads to many important benefits as discussed
in the introduction. Jin et al. [16] proposed to use a variational autoencoder (VAE) framework,
where the molecules are represented as junction trees of small clusters of atoms. This approach can
only indirectly optimize molecular properties in the learned latent embedding space before decoding
to a molecule, whereas our approach can directly optimize molecular properties of the molecular
graphs. You et al. [43] used an auto-regressive model to maximize the likelihood of the graph
generation process, but it cannot be used to generate attributed graphs. Li et al. [25] and Li et al.
[26] described sequential graph generation models where conditioning labels can be incorporated
to generate molecules whose molecular properties are close to specified target scores. However,
these approaches are also unable to directly perform optimization on desired molecular properties.
Overall, modeling the goal-directed graph generation task in a reinforcement learning framework is
still largely unexplored.

3 Proposed Method

In this section we formulate the problem of graph generation as learning an RL agent that iteratively
adds substructures and edges to the molecular graph in a chemistry-aware environment. We describe
the problem definition, the environment design, and the Graph Convolutional Policy Network that
predicts a distribution of actions which are used to update the graph being generated.

3.1 Problem Definition

We represent a graph G as (A,E, F), where A 2 {0, 1}n⇥n is the adjacency matrix, and F 2 Rn⇥d

is the node feature matrix assuming each node has d features. We define E 2 {0, 1}b⇥n⇥n to be the
(discrete) edge-conditioned adjacency tensor, assuming there are b possible edge types. Ei,j,k = 1 if
there exists an edge of type i between nodes j and k, and A =

Pb
i=1 Ei. Our primary objective is

to generate graphs that maximize a given property function S(G) 2 R, i.e., maximize EG0 [S(G0)],
where G0 is the generated graph, and S could be one or multiple domain-specific statistics of interest.

It is also of practical importance to constrain our model with two main sources of prior knowledge.
(1) Generated graphs need to satisfy a set of hard constraints. (2) We provide the model with a set of
example graphs G ⇠ pdata(G), and would like to incorporate such prior knowledge by regularizing
the property optimization objective with EG,G0 [J(G,G

0)] under distance metric J(·, ·). In the case of
molecule generation, the set of hard constraints is described by chemical valency while the distance
metric is an adversarially trained discriminator.

Figure 1: An overview of the proposed iterative graph generation method. Each row corresponds to
one step in the generation process. (a) The state is defined as the intermediate graph Gt, and the set
of scaffold subgraphs defined as C is appended for GCPN calculation. (b) GCPN conducts message
passing to encode the state as node embeddings then produce a policy ⇡✓. (c) An action at with 4
components is sampled from the policy. (d) The environment performs a chemical valency check on
the intermediate state, and then returns (e) the next state Gt+1 and (f) the associated reward rt.

3

State Space

• !" as the intermediate generated graph #"
• #$ contains a single node that represents a carbon atom

and policy gradient respectively. Guimaraes et al. [27] and Sanchez-Lengeling et al. [34] further
included an adversarial loss to the reinforcement learning reward to enforce similarity to a given
molecule dataset. In contrast, instead of using a text-based molecular representation, our approach
uses a graph-based molecular representation, which leads to many important benefits as discussed
in the introduction. Jin et al. [16] proposed to use a variational autoencoder (VAE) framework,
where the molecules are represented as junction trees of small clusters of atoms. This approach can
only indirectly optimize molecular properties in the learned latent embedding space before decoding
to a molecule, whereas our approach can directly optimize molecular properties of the molecular
graphs. You et al. [43] used an auto-regressive model to maximize the likelihood of the graph
generation process, but it cannot be used to generate attributed graphs. Li et al. [25] and Li et al.
[26] described sequential graph generation models where conditioning labels can be incorporated
to generate molecules whose molecular properties are close to specified target scores. However,
these approaches are also unable to directly perform optimization on desired molecular properties.
Overall, modeling the goal-directed graph generation task in a reinforcement learning framework is
still largely unexplored.

3 Proposed Method

In this section we formulate the problem of graph generation as learning an RL agent that iteratively
adds substructures and edges to the molecular graph in a chemistry-aware environment. We describe
the problem definition, the environment design, and the Graph Convolutional Policy Network that
predicts a distribution of actions which are used to update the graph being generated.

3.1 Problem Definition

We represent a graph G as (A,E, F), where A 2 {0, 1}n⇥n is the adjacency matrix, and F 2 Rn⇥d

is the node feature matrix assuming each node has d features. We define E 2 {0, 1}b⇥n⇥n to be the
(discrete) edge-conditioned adjacency tensor, assuming there are b possible edge types. Ei,j,k = 1 if
there exists an edge of type i between nodes j and k, and A =

Pb
i=1 Ei. Our primary objective is

to generate graphs that maximize a given property function S(G) 2 R, i.e., maximize EG0 [S(G0)],
where G0 is the generated graph, and S could be one or multiple domain-specific statistics of interest.

It is also of practical importance to constrain our model with two main sources of prior knowledge.
(1) Generated graphs need to satisfy a set of hard constraints. (2) We provide the model with a set of
example graphs G ⇠ pdata(G), and would like to incorporate such prior knowledge by regularizing
the property optimization objective with EG,G0 [J(G,G

0)] under distance metric J(·, ·). In the case of
molecule generation, the set of hard constraints is described by chemical valency while the distance
metric is an adversarially trained discriminator.

Figure 1: An overview of the proposed iterative graph generation method. Each row corresponds to
one step in the generation process. (a) The state is defined as the intermediate graph Gt, and the set
of scaffold subgraphs defined as C is appended for GCPN calculation. (b) GCPN conducts message
passing to encode the state as node embeddings then produce a policy ⇡✓. (c) An action at with 4
components is sampled from the policy. (d) The environment performs a chemical valency check on
the intermediate state, and then returns (e) the next state Gt+1 and (f) the associated reward rt.

3

Action Space

• A set of atoms ! =∪$%&' !$ to be added during each step
• Actions:
• Connecting a new atom !$ to a node in ()
• Connecting exiting nodes within ()

and policy gradient respectively. Guimaraes et al. [27] and Sanchez-Lengeling et al. [34] further
included an adversarial loss to the reinforcement learning reward to enforce similarity to a given
molecule dataset. In contrast, instead of using a text-based molecular representation, our approach
uses a graph-based molecular representation, which leads to many important benefits as discussed
in the introduction. Jin et al. [16] proposed to use a variational autoencoder (VAE) framework,
where the molecules are represented as junction trees of small clusters of atoms. This approach can
only indirectly optimize molecular properties in the learned latent embedding space before decoding
to a molecule, whereas our approach can directly optimize molecular properties of the molecular
graphs. You et al. [43] used an auto-regressive model to maximize the likelihood of the graph
generation process, but it cannot be used to generate attributed graphs. Li et al. [25] and Li et al.
[26] described sequential graph generation models where conditioning labels can be incorporated
to generate molecules whose molecular properties are close to specified target scores. However,
these approaches are also unable to directly perform optimization on desired molecular properties.
Overall, modeling the goal-directed graph generation task in a reinforcement learning framework is
still largely unexplored.

3 Proposed Method

In this section we formulate the problem of graph generation as learning an RL agent that iteratively
adds substructures and edges to the molecular graph in a chemistry-aware environment. We describe
the problem definition, the environment design, and the Graph Convolutional Policy Network that
predicts a distribution of actions which are used to update the graph being generated.

3.1 Problem Definition

We represent a graph G as (A,E, F), where A 2 {0, 1}n⇥n is the adjacency matrix, and F 2 Rn⇥d

is the node feature matrix assuming each node has d features. We define E 2 {0, 1}b⇥n⇥n to be the
(discrete) edge-conditioned adjacency tensor, assuming there are b possible edge types. Ei,j,k = 1 if
there exists an edge of type i between nodes j and k, and A =

Pb
i=1 Ei. Our primary objective is

to generate graphs that maximize a given property function S(G) 2 R, i.e., maximize EG0 [S(G0)],
where G0 is the generated graph, and S could be one or multiple domain-specific statistics of interest.

It is also of practical importance to constrain our model with two main sources of prior knowledge.
(1) Generated graphs need to satisfy a set of hard constraints. (2) We provide the model with a set of
example graphs G ⇠ pdata(G), and would like to incorporate such prior knowledge by regularizing
the property optimization objective with EG,G0 [J(G,G

0)] under distance metric J(·, ·). In the case of
molecule generation, the set of hard constraints is described by chemical valency while the distance
metric is an adversarially trained discriminator.

Figure 1: An overview of the proposed iterative graph generation method. Each row corresponds to
one step in the generation process. (a) The state is defined as the intermediate graph Gt, and the set
of scaffold subgraphs defined as C is appended for GCPN calculation. (b) GCPN conducts message
passing to encode the state as node embeddings then produce a policy ⇡✓. (c) An action at with 4
components is sampled from the policy. (d) The environment performs a chemical valency check on
the intermediate state, and then returns (e) the next state Gt+1 and (f) the associated reward rt.

3

State Transition Dynamics

• Incorporate domain-specific rules in the state transition dynamics.
Only carry out actions that obey the given rules
• Infeasible actions by the policy network are rejected and state remains

unchanged

and policy gradient respectively. Guimaraes et al. [27] and Sanchez-Lengeling et al. [34] further
included an adversarial loss to the reinforcement learning reward to enforce similarity to a given
molecule dataset. In contrast, instead of using a text-based molecular representation, our approach
uses a graph-based molecular representation, which leads to many important benefits as discussed
in the introduction. Jin et al. [16] proposed to use a variational autoencoder (VAE) framework,
where the molecules are represented as junction trees of small clusters of atoms. This approach can
only indirectly optimize molecular properties in the learned latent embedding space before decoding
to a molecule, whereas our approach can directly optimize molecular properties of the molecular
graphs. You et al. [43] used an auto-regressive model to maximize the likelihood of the graph
generation process, but it cannot be used to generate attributed graphs. Li et al. [25] and Li et al.
[26] described sequential graph generation models where conditioning labels can be incorporated
to generate molecules whose molecular properties are close to specified target scores. However,
these approaches are also unable to directly perform optimization on desired molecular properties.
Overall, modeling the goal-directed graph generation task in a reinforcement learning framework is
still largely unexplored.

3 Proposed Method

In this section we formulate the problem of graph generation as learning an RL agent that iteratively
adds substructures and edges to the molecular graph in a chemistry-aware environment. We describe
the problem definition, the environment design, and the Graph Convolutional Policy Network that
predicts a distribution of actions which are used to update the graph being generated.

3.1 Problem Definition

We represent a graph G as (A,E, F), where A 2 {0, 1}n⇥n is the adjacency matrix, and F 2 Rn⇥d

is the node feature matrix assuming each node has d features. We define E 2 {0, 1}b⇥n⇥n to be the
(discrete) edge-conditioned adjacency tensor, assuming there are b possible edge types. Ei,j,k = 1 if
there exists an edge of type i between nodes j and k, and A =

Pb
i=1 Ei. Our primary objective is

to generate graphs that maximize a given property function S(G) 2 R, i.e., maximize EG0 [S(G0)],
where G0 is the generated graph, and S could be one or multiple domain-specific statistics of interest.

It is also of practical importance to constrain our model with two main sources of prior knowledge.
(1) Generated graphs need to satisfy a set of hard constraints. (2) We provide the model with a set of
example graphs G ⇠ pdata(G), and would like to incorporate such prior knowledge by regularizing
the property optimization objective with EG,G0 [J(G,G

0)] under distance metric J(·, ·). In the case of
molecule generation, the set of hard constraints is described by chemical valency while the distance
metric is an adversarially trained discriminator.

Figure 1: An overview of the proposed iterative graph generation method. Each row corresponds to
one step in the generation process. (a) The state is defined as the intermediate graph Gt, and the set
of scaffold subgraphs defined as C is appended for GCPN calculation. (b) GCPN conducts message
passing to encode the state as node embeddings then produce a policy ⇡✓. (c) An action at with 4
components is sampled from the policy. (d) The environment performs a chemical valency check on
the intermediate state, and then returns (e) the next state Gt+1 and (f) the associated reward rt.

3

Reward Design

• Final rewards: a sum over domain-specific rewards (e.g., final
property scores, penalization of unrealistic molecules and adversarial
rewards
• Intermediate rewards: step-wise validity rewards and adversarial

rewards

and policy gradient respectively. Guimaraes et al. [27] and Sanchez-Lengeling et al. [34] further
included an adversarial loss to the reinforcement learning reward to enforce similarity to a given
molecule dataset. In contrast, instead of using a text-based molecular representation, our approach
uses a graph-based molecular representation, which leads to many important benefits as discussed
in the introduction. Jin et al. [16] proposed to use a variational autoencoder (VAE) framework,
where the molecules are represented as junction trees of small clusters of atoms. This approach can
only indirectly optimize molecular properties in the learned latent embedding space before decoding
to a molecule, whereas our approach can directly optimize molecular properties of the molecular
graphs. You et al. [43] used an auto-regressive model to maximize the likelihood of the graph
generation process, but it cannot be used to generate attributed graphs. Li et al. [25] and Li et al.
[26] described sequential graph generation models where conditioning labels can be incorporated
to generate molecules whose molecular properties are close to specified target scores. However,
these approaches are also unable to directly perform optimization on desired molecular properties.
Overall, modeling the goal-directed graph generation task in a reinforcement learning framework is
still largely unexplored.

3 Proposed Method

In this section we formulate the problem of graph generation as learning an RL agent that iteratively
adds substructures and edges to the molecular graph in a chemistry-aware environment. We describe
the problem definition, the environment design, and the Graph Convolutional Policy Network that
predicts a distribution of actions which are used to update the graph being generated.

3.1 Problem Definition

We represent a graph G as (A,E, F), where A 2 {0, 1}n⇥n is the adjacency matrix, and F 2 Rn⇥d

is the node feature matrix assuming each node has d features. We define E 2 {0, 1}b⇥n⇥n to be the
(discrete) edge-conditioned adjacency tensor, assuming there are b possible edge types. Ei,j,k = 1 if
there exists an edge of type i between nodes j and k, and A =

Pb
i=1 Ei. Our primary objective is

to generate graphs that maximize a given property function S(G) 2 R, i.e., maximize EG0 [S(G0)],
where G0 is the generated graph, and S could be one or multiple domain-specific statistics of interest.

It is also of practical importance to constrain our model with two main sources of prior knowledge.
(1) Generated graphs need to satisfy a set of hard constraints. (2) We provide the model with a set of
example graphs G ⇠ pdata(G), and would like to incorporate such prior knowledge by regularizing
the property optimization objective with EG,G0 [J(G,G

0)] under distance metric J(·, ·). In the case of
molecule generation, the set of hard constraints is described by chemical valency while the distance
metric is an adversarially trained discriminator.

Figure 1: An overview of the proposed iterative graph generation method. Each row corresponds to
one step in the generation process. (a) The state is defined as the intermediate graph Gt, and the set
of scaffold subgraphs defined as C is appended for GCPN calculation. (b) GCPN conducts message
passing to encode the state as node embeddings then produce a policy ⇡✓. (c) An action at with 4
components is sampled from the policy. (d) The environment performs a chemical valency check on
the intermediate state, and then returns (e) the next state Gt+1 and (f) the associated reward rt.

3

Graph Convolutional Policy Network
• Compute node embeddings with neural message passing algorithms
• Action prediction
• Selection of two nodes
• Prediction of edge types
• Prediction of termination

adversarial rewards. A small positive reward is assigned if the action does not violate valency rules,
otherwise a small negative reward is assigned. As an example, the second row of Figure 1 shows the
scenario that a termination action is taken. When the environment updates according to a terminating
action, both a step reward and a final reward are given, and the generation process terminates.

To ensure that the generated molecules resemble a given set of molecules, we employ the Generative
Adversarial Network (GAN) framework [10] to define the adversarial rewards V (⇡✓, D�)

min
✓

max
�

V (⇡✓, D�) = Ex⇠pdata [logD�(x)] + Ex⇠⇡✓ [logD�(1� x)] (1)

where ⇡✓ is the policy network, D� is the discriminator network, x represents an input graph, pdata
is the underlying data distribution which defined either over final graphs (for final rewards) or
intermediate graphs (for intermediate rewards). However, only D� can be trained with stochastic
gradient descent, as x is a graph object that is non-differentiable with respect to parameters �. Instead,
we use �V (⇡✓, D�) as an additional reward together with other rewards, and optimize the total
rewards with policy gradient methods [44] (Section 3.5). The discriminator network employs the
same structure of the policy network (Section 3.4) to calculate the node embeddings, which are then
aggregated into a graph embedding and cast into a scalar prediction.

3.4 Graph Convolutional Policy Network

Having illustrated the graph generation environment, we outline the architecture of GCPN, a policy
network learned by the RL agent to act in the environment. GCPN takes the intermediate graph Gt

and the collection of scaffold subgraphs C as inputs, and outputs the action at, which predicts a new
link to be added, as described in Section 3.3.

Computing node embeddings. In order to perform link prediction in Gt [C, our model first
computes the node embeddings of an input graph using Graph Convolutional Networks (GCN)
[20, 5, 18, 36, 8], a well-studied technique that achieves state-of-the-art performance in representation
learning for molecules. We use the following variant that supports the incorporation of categorical
edge types. The high-level idea is to perform message passing over each edge type for a total of L
layers. At the l

th layer of the GCN, we aggregate all messages from different edge types to compute
the next layer node embedding H

(l+1) 2 R(n+c)⇥k, where n, c are the sizes of Gt and C respectively,
and k is the embedding dimension. More concretely,

H
(l+1) = AGG(ReLU({D̃� 1

2
i ẼiD̃

� 1
2

i H
(l)
W

(l)
i }, 8i 2 (1, ..., b))) (2)

where Ei is the i
th slice of edge-conditioned adjacency tensor E, and Ẽi = Ei + I; D̃i =

P
k Ẽijk.

W
(l)
i is a trainable weight matrix for the i

th edge type, and H
(l) is the node representation

learned in the l
th layer. We use AGG(·) to denote an aggregation function that could be one of

{MEAN, MAX, SUM, CONCAT} [12]. This variant of the GCN layer allows for parallel implementa-
tion while remaining expressive for aggregating information among different edge types. We apply a
L layer GCN to the extended graph Gt [C to compute the final node embedding matrix X = H

(L).

Action prediction. The link prediction based action at at time step t is a concatenation of four com-
ponents: selection of two nodes, prediction of edge type, and prediction of termination. Concretely,
each component is sampled according to a predicted distribution governed by Equation 3 and 4.

at = CONCAT(afirst, asecond, aedge, astop) (3)

ffirst(st) = SOFTMAX(mf (X)),

fsecond(st) = SOFTMAX(ms(Xafirst , X)),

fedge(st) = SOFTMAX(me(Xafirst , Xasecond)),

fstop(st) = SOFTMAX(mt(AGG(X))),

afirst ⇠ ffirst(st) 2 {0, 1}n

asecond ⇠ fsecond(st) 2 {0, 1}n+c

aedge ⇠ fedge(st) 2 {0, 1}b

astop ⇠ fstop(st) 2 {0, 1}

(4)

We use mf to denote a Multilayer Perceptron (MLP) that maps Z0:n 2 Rn⇥k to a Rn vector, which
represents the probability distribution of selecting each node. The information from the first selected
node afirst is incorporated in the selection of the second node by concatenating its embedding Zafirst

5

Data Sets

• ZINC, 250K drug-like organic molecules of up to 38 heavy atoms
with 9 distinct atomic numbers and 4 bond types.

Results on Reconstruction and Validity

• Reconstruct the input molecules and decoding valid molecules from
the prior distribution

Table from Jin et al. 2018

Junction Tree Variational Autoencoder for Molecular Graph Generation

Table 1. Reconstruction accuracy and prior validity results. Base-
line results are copied from Kusner et al. (2017); Dai et al. (2018);
Simonovsky & Komodakis (2018).

Method Reconstruction Validity

CVAE 44.6% 0.7%
GVAE 53.7% 7.2%
SD-VAE2 76.2% 43.5%
GraphVAE - 13.5%
JT-VAE 76.7% 100.0%

Results Table 1 shows that JT-VAE outperforms previ-
ous models in molecule reconstruction, and always pro-
duces valid molecules when sampled from prior distribu-
tion. These sampled molecules have non-trivial structures
such as simple chains (Figure 6). We further sampled 5000
molecules from prior and found they are all distinct from the
training set. Thus our model is not a simple memorization.

Analysis We qualitatively examine the latent space of JT-
VAE by visualizing the neighborhood of molecules. Given
a molecule, we follow the method in Kusner et al. (2017)
to construct a grid visualization of its neighborhood. For
comparison, we select the same molecule visualized in Dai
et al. (2018). Figure 6 shows the local neighborhood of
this molecule. Compared to the figure in Dai et al. (2018),
our neighborhood does not contain molecules with huge
rings (with more than 7 atoms), which rarely occur in the
dataset. We also highlight two groups of closely resembling
molecules that have identical tree structures but vary only
in how clusters are attached together. This demonstrates the
smoothness of learned molecular embeddings.

3.2. Bayesian Optimization

Setup The second task is to produce novel molecules with
desired properties. Following (Kusner et al., 2017), our
target chemical property y(·) is octanol-water partition coef-
ficients (logP) penalized by the synthetic accessibility (SA)
score and number of long cycles.3 To perform Bayesian
optimization (BO), we first train a VAE and associate each
molecule with a latent vector, given by the mean of the vari-
ational encoding distribution. After the VAE is learned, we
train a sparse Gaussian process (SGP) to predict y(m) given
its latent representation. Then we perform five iterations of
batched BO using the expected improvement heuristic.

For comparison, we report 1) the predictive performance of
SGP trained on latent encodings learned by different VAEs,
measured by log-likelihood (LL) and root mean square er-
ror (RMSE) with 10-fold cross validation. 2) The top-3
molecules found by BO under different models.

2The SD-VAE result is copied from Table 1 in Dai et al. (2018).
3y(m) = logP (m) � SA(m) � cycle(m) where cycle(m)

counts the number of rings that have more than six atoms.

Table 2. Best molecule property scores found by each method.
Baseline results are from Kusner et al. (2017); Dai et al. (2018).

Method 1st 2nd 3rd

CVAE 1.98 1.42 1.19
GVAE 2.94 2.89 2.80

SD-VAE 4.04 3.50 2.96
JT-VAE 5.30 4.93 4.49

Figure 7. Best three molecules and their property scores found by
JT-VAE using Bayesian optimization.

Results As shown in Table 2, JT-VAE finds molecules with
significantly better scores than previous methods. Figure 7
lists the top-3 best molecules found by JT-VAE. In fact,
JT-VAE finds over 50 molecules with scores over 3.50 (the
second best molecule proposed by SD-VAE). Moreover, the
SGP yields better predictive performance when trained on
JT-VAE embeddings (Table 3).

3.3. Constrained Optimization

Setup The third task is to perform molecule optimization
in a constrained scenario. Given a molecule m, the task is
to find a different molecule m0 that has the highest property
value with the molecular similarity sim(m,m0) � � for
some threshold �. We use Tanimoto similarity with Morgan
fingerprint (Rogers & Hahn, 2010) as the similarity metric,
and penalized logP coefficient as our target chemical prop-
erty. For this task, we jointly train a property predictor F
(parameterized by a feed-forward network) with JT-VAE to
predict y(m) from the latent embedding of m. To optimize
a molecule m, we start from its latent representation, and
apply gradient ascent in the latent space to improve the pre-
dicted score F (·), similar to (Mueller et al., 2017). After
applying K = 80 gradient steps, K molecules are decoded
from resulting latent trajectories, and we report the molecule
with the highest F (·) that satisfies the similarity constraint.
A modification succeeds if one of the decoded molecules
satisfies the constraint and is distinct from the original.

To provide the greatest challenge, we selected 800 molecules
with the lowest property score y(·) from the test set. We
report the success rate (how often a modification succeeds),
and among success cases the average improvement y(m0)�
y(m) and molecular similarity sim(m,m0) between the
original and modified molecules m and m0.

Results on Property Optimization

• Property Optimization: generate novel molecules whose specified
molecular properties are optimized.

Table from You et al. 2018

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Method
Penalized logP QED

1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

Hill Climbing � � � � 0.838 0.814 0.814 100.0%

ORGAN 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%
JT-VAE 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

set to be 38. There are 9 atom types and 3 edge types, as molecules are represented in kekulized form.
For specific reward design, we linearly scale each reward component according to its importance
in molecule generation from a chemistry point of view as well as the quality of generation results.
When summing up all the rewards collected from a molecule generation trajectory, the range of the
reward value that the model can get is [�4, 4] for final chemical property reward, [�2, 2] for final
chemical filter reward, [�1, 1] for final adversarial reward, [�1, 1] for intermediate adversarial reward
and [�1, 1] for intermediate validity reward.

GCPN Setup. We use a 3-layer defined GCPN as the policy network with 64 dimensional node
embedding in all hidden layers, and batch normalization [13] is applied after each layer. Another
3-layer GCN with the same architecture is used for discriminator training. We find little improvement
when further adding GCN layers. We observe comparable performance among different aggregation
functions and select SUM(·) for all experiments. We found both the expert pretraining and RL
objective important for generating high quality molecules, thus both of them are kept throughout
training. Specifically, we use PPO algorithm to train the RL objective with the default hyperparameters
as we do not observe too much performance gain from tuning these hyperparameters, and the learning
rate is set as 0.001. The expert pretraining objective is trained with a learning rate of 0.00025, and we
do observe that adding this objective contributes to faster convergence and better performance. Both
objectives are trained using Adam optimizer [19] with batch size 32.

Baselines. We compare our method with the following state-of-the-art baselines. Junction Tree VAE
(JT-VAE) [16] is a state-of-the-art algorithm that combines graph representation and a VAE framework
for generating molecular graphs, and uses Bayesian optimization over the learned latent space to
search for molecules with optimized property scores. JT-VAE has been shown to outperform previous
deep generative models for molecule generation, including Character-VAE [9], Grammar-VAE [22],
SD-VAE [4] and GraphVAE [39]. We also compare our approach with ORGAN [27], a state-of-
the-art RL-based molecule generation algorithm using a text-based representation of molecules. To
demonstrate the benefits of learning-based approaches, we further implement a simple rule based
model using the stochastic hill-climbing algorithm. We start with a graph containing a single atom
(the same setting as GCPN), traverse all valid actions given the current state, randomly pick the next
state with top 5 highest property score as long as there is improvement over the current state, and loop
until reaching the maximum number of nodes. To make fair comparison across different methods,
we set up the same objective functions for all methods, and run all the experiments on the same
computing facilities using 32 CPU cores. We run both deep learning baselines using their released
code and allow the baselines to have wall clock running time for roughly 24 hours, while our model
can get the results in roughly 8 hours.

4.2 Molecule Generation Results

Property optimization. In this task, we focus on generating molecules with the highest possible
penalized logP [22] and QED [1] scores. Penalized logP is a logP score that also accounts for ring
size and synthetic accessibility [6], while QED is an indicator of drug-likeness. Note that both scores
are calculated from empirical prediction models whose parameters are estimated from related datasets
[41, 1], and these scores are widely used in previous molecule generation papers [9, 22, 4, 39, 27].
Penalized logP has an unbounded range, while the QED has a range of [0, 1] by definition, thus
directly comparing the percentage improvement of QED may not be meaningful. We adopt the same
evaluation method in previous approaches [22, 4, 16], reporting the best 3 property scores found by

7

Results on Property Targeting

• Property Targeting: generate novel molecules whose specified
molecular properties are as close to the target scores as possible.

Table 2: Comparison of the effectiveness of property targeting task.

Method
�2.5  logP  �2 5  logP  5.5 150  MW  200 500  MW  550

Success Diversity Success Diversity Success Diversity Success Diversity

ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 �
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 � 0.2% 0.909 15.1% 0.759 0.1% 0.907
GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920

Table 3: Comparison of the performance in the constrained optimization task.

�
JT-VAE GCPN

Improvement Similarity Success Improvement Similarity Success

0.0 1.91± 2.04 0.28± 0.15 97.5% 4.20± 1.28 0.32± 0.12 100.0%
0.2 1.68± 1.85 0.33± 0.13 97.1% 4.12± 1.19 0.34± 0.11 100.0%
0.4 0.84± 1.45 0.51± 0.10 83.6% 2.49± 1.30 0.47± 0.08 100.0%
0.6 0.21± 0.71 0.69± 0.06 46.4% 0.79± 0.63 0.68± 0.08 100.0%

each model and the fraction of molecules that satisfy chemical validity. Table 1 summarizes the best
property scores of molecules found by each model, and the statistics in ZINC250k is also shown
for comparison. Our method consistently performs significantly better than previous methods when
optimizing penalized logP, achieving an average improvement of 61% compared to JT-VAE, and
186% compared to ORGAN. Our method outperforms all the baselines in the QED optimization task
as well, and significantly outperforms the stochastic hill climbing baseline.

Compared with ORGAN, our model can achieve a perfect validity ratio due to the molecular graph
representation that allows for step-wise chemical valency check. Compared to JT-VAE, our model
can reach a much higher score owing to the fact that RL allows for direct optimization of a given
property score and is able to easily extrapolate beyond the given dataset. Visualizations of generated
molecules with optimized logP and QED scores are displayed in Figure 2(a) and (b) respectively.

Although most generated molecules are realistic, in some very rare cases, especially where we reduce
the of the adversarial reward and expert pretraining components, our method can generate undesirable
molecules with astonishingly high penalized logP predicted by the empirical model, such as the one
on the bottom-right of Figure 2(a) in which our method correctly identified that Iodine has the highest
per atom contribution in the empirical model used to calculate logP. These undesirable molecules
are likely to have inaccurate predicted properties and illustrate an issue with optimizing properties
calculated by an empirical model, such as penalized logP and QED, without incorporating prior
knowledge. Empirical prediction models that predict molecular properties generalize poorly for
molecules that are significantly different from the set of molecules used to train the model. Without
any restrictions on the generated molecules, an optimization algorithm would exploit the lack of
generalizability of the empirical property prediction models in certain areas of molecule space. Our
model addresses this issue by incorporating prior knowledge of known realistic molecules using
adversarial training and expert pretraining, which results in more realistic molecules, but with lower
property scores calculated by the empirical prediction models. Note that the hill climbing baseline
algorithm mostly generates undesirable cases where the accuracy of the empirical prediction model is
questionable, thus its performance with optimizing penalized logP is not listed on Table 1.

Property Targeting. In this task, we specify a target range for molecular weight (MW) and logP,
and report the percentage of generated molecules with property scores within the range, as well as the
diversity of generated molecules. The diversity of a set of molecules is defined as the average pairwise
Tanimoto distance between the Morgan fingerprints [33] of the molecules. The RL reward for this
task is the L1 distance between the property score of a generated molecule and the range center. To
increase the difficulty, we set the target range such that few molecules in ZINC250k dataset are within
the range to test the extrapolation ability of the methods to optimize for a given target. The target
ranges include �2.5  logP  �2, 5  logP  5.5, 150  MW  200 and 500  MW  550.

8

Table from You et al. 2018

Results on Constrained Property
Optimization
• Constrained Property Optimization: generate novel molecules

whose specified molecular properties are optimized, while also
containing a specified molecular substructure.

Table 2: Comparison of the effectiveness of property targeting task.

Method
�2.5  logP  �2 5  logP  5.5 150  MW  200 500  MW  550

Success Diversity Success Diversity Success Diversity Success Diversity

ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 �
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 � 0.2% 0.909 15.1% 0.759 0.1% 0.907
GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920

Table 3: Comparison of the performance in the constrained optimization task.

�
JT-VAE GCPN

Improvement Similarity Success Improvement Similarity Success

0.0 1.91± 2.04 0.28± 0.15 97.5% 4.20± 1.28 0.32± 0.12 100.0%
0.2 1.68± 1.85 0.33± 0.13 97.1% 4.12± 1.19 0.34± 0.11 100.0%
0.4 0.84± 1.45 0.51± 0.10 83.6% 2.49± 1.30 0.47± 0.08 100.0%
0.6 0.21± 0.71 0.69± 0.06 46.4% 0.79± 0.63 0.68± 0.08 100.0%

each model and the fraction of molecules that satisfy chemical validity. Table 1 summarizes the best
property scores of molecules found by each model, and the statistics in ZINC250k is also shown
for comparison. Our method consistently performs significantly better than previous methods when
optimizing penalized logP, achieving an average improvement of 61% compared to JT-VAE, and
186% compared to ORGAN. Our method outperforms all the baselines in the QED optimization task
as well, and significantly outperforms the stochastic hill climbing baseline.

Compared with ORGAN, our model can achieve a perfect validity ratio due to the molecular graph
representation that allows for step-wise chemical valency check. Compared to JT-VAE, our model
can reach a much higher score owing to the fact that RL allows for direct optimization of a given
property score and is able to easily extrapolate beyond the given dataset. Visualizations of generated
molecules with optimized logP and QED scores are displayed in Figure 2(a) and (b) respectively.

Although most generated molecules are realistic, in some very rare cases, especially where we reduce
the of the adversarial reward and expert pretraining components, our method can generate undesirable
molecules with astonishingly high penalized logP predicted by the empirical model, such as the one
on the bottom-right of Figure 2(a) in which our method correctly identified that Iodine has the highest
per atom contribution in the empirical model used to calculate logP. These undesirable molecules
are likely to have inaccurate predicted properties and illustrate an issue with optimizing properties
calculated by an empirical model, such as penalized logP and QED, without incorporating prior
knowledge. Empirical prediction models that predict molecular properties generalize poorly for
molecules that are significantly different from the set of molecules used to train the model. Without
any restrictions on the generated molecules, an optimization algorithm would exploit the lack of
generalizability of the empirical property prediction models in certain areas of molecule space. Our
model addresses this issue by incorporating prior knowledge of known realistic molecules using
adversarial training and expert pretraining, which results in more realistic molecules, but with lower
property scores calculated by the empirical prediction models. Note that the hill climbing baseline
algorithm mostly generates undesirable cases where the accuracy of the empirical prediction model is
questionable, thus its performance with optimizing penalized logP is not listed on Table 1.

Property Targeting. In this task, we specify a target range for molecular weight (MW) and logP,
and report the percentage of generated molecules with property scores within the range, as well as the
diversity of generated molecules. The diversity of a set of molecules is defined as the average pairwise
Tanimoto distance between the Morgan fingerprints [33] of the molecules. The RL reward for this
task is the L1 distance between the property score of a generated molecule and the range center. To
increase the difficulty, we set the target range such that few molecules in ZINC250k dataset are within
the range to test the extrapolation ability of the methods to optimize for a given target. The target
ranges include �2.5  logP  �2, 5  logP  5.5, 150  MW  200 and 500  MW  550.

8

Table from You et al. 2018

Generated Molecules

Table from You et al. 2018

Figure 2: Samples of generated molecules in property optimization and constrained property opti-
mization task. In (c), the two columns correspond to molecules before and after modification.

As is shown in Table 2, GCPN has a significantly higher success rate in generating molecules with
properties within the target range, compared to baseline methods. In addition, GCPN is able to
generate molecules with high diversity, indicating that it is capable of learning a general stochastic
policy to generate molecular graphs that fulfill the property requirements.

Constrained Property Optimization. In this experiment, we optimize the penalized logP while
constraining the generated molecules to contain one of the 800 ZINC molecules with low penalized
logP, following the evaluation in JT-VAE. Since JT-VAE cannot constrain the generated molecule to
have certain structure, we adopt their evaluation method where the constraint is relaxed such that the
molecule similarity sim(G,G

0) between the original and modified molecules is above a threshold �.

We train a fixed GCPN in an environment whose initial state is randomly set to be one of the 800
ZINC molecules, then conduct the same training procedure as the property optimization task. Over
the 800 molecules, the mean and standard deviation of the highest property score improvement and
the corresponding similarity between the original and modified molecules are reported in Table 3.
Our model significantly outperforms JT-VAE with 184% higher penalized logP improvement on
average, and consistently succeeds in discovering molecules with higher logP scores. Also note that
JT-VAE performs optimization steps for each given molecule constraint. In contrast, GCPN can
generalize well: it learns a general policy to improve property scores, and applies the same policy
to all 800 molecules. Figure 2(c) shows that GCPN can modify ZINC molecules to achieve high
penalized logP score while still containing the substructure of the original molecule.

5 Conclusion

We introduced GCPN, a graph generation policy network using graph state representation and ad-
versarial training, and applied it to the task of goal-directed molecular graph generation. GCPN
consistently outperforms other state-of-the-art approaches in the tasks of molecular property opti-
mization and targeting, and at the same time, maintains 100% validity and resemblance to realistic
molecules. Furthermore, the application of GCPN can extend well beyond molecule generation.
The algorithm can be applied to generate graphs in many contexts, such as electric circuits, social
networks, and explore graphs that can optimize certain domain specific properties.

6 Acknowledgements

The authors thank Xiang Ren, Marinka Zitnik, Jiaming Song, Joseph Gomes, Amir Barati Farimani,
Peter Eastman, Franklin Lee, Zhenqin Wu and Paul Wender for their helpful discussions. This
research has been supported in part by DARPA SIMPLEX, ARO MURI, Stanford Data Science
Initiative, Huawei, JD, and Chan Zuckerberg Biohub. The Pande Group acknowledges the generous
support of Dr. Anders G. Frøseth and Mr. Christian Sundt for our work on machine learning. The
Pande Group is broadly supported by grants from the NIH (R01 GM062868 and U19 AI109662) as
well as gift funds and contributions from Folding@home donors.

V.S.P. is a consultant & SAB member of Schrodinger, LLC and Globavir, sits on the Board of
Directors of Apeel Inc, Asimov Inc, BioAge Labs, Freenome Inc, Omada Health, Patient Ping, Rigetti
Computing, and is a General Partner at Andreessen Horowitz.

9

Summary

• Graph generation is an important problem in many areas
• Generating social networks
• Drug discovery
• Designing electric circuits

• Deep generative models for graph
• GraphVAE, JTVAE
• MolGAN
• GCPN

References
• GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders.

https://arxiv.org/pdf/1802.03480.pdf
• MolGAN: An implicit generative model for small molecular graphs.

https://arxiv.org/pdf/1805.11973.pdf
• GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models.

https://arxiv.org/pdf/1802.08773.pdf
• Graph Convolutional Policy Network for Goal-Directed Molecular Graph

Generation. https://arxiv.org/pdf/1806.02473.pdf
• Junction Tree Variational Autoencoder for Molecular Graph Generation.

https://arxiv.org/pdf/1802.04364.pdf

https://arxiv.org/pdf/1802.03480.pdf
https://arxiv.org/pdf/1802.08773.pdf
https://arxiv.org/pdf/1806.02473.pdf
https://arxiv.org/pdf/1802.04364.pdf

Future Directions

• Application to more domains and applications
• Graphs are ubiquitous

• Graph neural networks for reasoning
• Computer vision
• Natural language understanding

• Graph neural networks + reinforcement learning
• Relational deep reinforcement learning (Zambaldi et al. 2018)

• Better theoretical understanding of graph neural networks
•…

Thanks!
Contact: jian.tang@hec.ca

