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Deep Generative Models

* Goal: model data distribution p(x) explicitly or implicitly, where x 1s a
high-dimensional random variable.

* Images, speech, and natural language

i love disney movies but this one was not at all what i expected . the

story line was so predictable , it was dumb .
1 liked the movie but it didn’t hold my attention as much as i expected .

they just don’t make movies like this anymore .

my son loves this movie and it is a good family movie . i would re-

comend it for anyone who likes to watch movies with kids .
i bought this case for my ipad 3 . it was not as pictured and it was too
1 Second small and the ipad mini was not secured inside it , so i returned it .
Image Generation Speech Generation Natural Language Generation

(BigGAN, Brock et al. 2018) (WaveNet, Oord, et al. 2016) (Tang et al. 2016)



Applications for Graph Generation
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Image from You et al. 2018

Social networks Molecules



Three Types of Deep Generative Models

* Variational Autoencoders (VAESs)
* Generative Adversarial Networks (GANs)
* Deep Auto-regressive Models



Variational AutoEncoders (VAEs, Kingma
et al. 2014)

* Latent variable model - Q; B ;"“*79
* An encoder g4 (z|x) qp\Z|X l /" pe(x|z)
* A decoder pg (x|2) EnCOdeL ( { zefc:odelr(
Ce . 1 etwor etwor
* Maximizing the likelithood log p(x) \__,\,:

* Inference intractable since z i1s continuous.

« Maximizing the variational lower-bound L(¢, 8; x)
* Reparametrization trick for jointly optimizing encoder and decoder

L(,0;x)
= Eq,, (z1x) 108Pe(x|2) — KL[q4(2]x)||p(2)]

Reconstruction Regularization



Generative Adversarial Networks (GAN:S,
Goodfellow et al. 2014 )

* A two-player minimax game
* Generator G: z -> x retuotd — s |
* Discriminator D: x-> {0,1}

.

1
&

* Discriminator aims to distinguish between ¢ .
real data and generated data
e Generator aims to fool the discriminator G// i

min max V (D, 6) = Ey_p a0 108 D(O)] + E,op, ) l0g(1 = D(G(2)))]



https://medium.com/coinmonks/celebrity-face-generation-
https://medium.com/coinmonks/celebrity-face-generation-

Deep Auto-regressive Models (Oort et al.
2016 )

* Example of deep auto-regressive model
 Recurrent Neural Networks

* PixelRNN, Pixel CNN (Oord et al. 2016)

* Generate an 1mage pixel by pixel ©. 0.0 0.0 ¢
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Figure from WaveNet



Challenges for Graph Generation

* The structures and sizes of graphs are different
* No orders between the nodes
* Discrete



GraphVAE (Simonovsky and Komodakis
2018)

* VAE framework for graph generation

* Graph as mput data

* Encoder: graph neural networks + gated pooling => graph representation ( L1
et al. 2015)

* Decoder: output a probabilistic fully-connected graph of a predefined
maximum size

* Model the existence of nodes, edges, and their attributes independently
e Graph matching is required



GraphVAE
(Simonovsky and Komodakis 2018)

* Input graph G=(A,E,F)

* A: the adjacency matrix, E: edge attribute tensor, F: node attribute matrix
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Image from Simonovsky and Komodakis 2018



Probabilistic Graph Decoder

 Restrict the domain to the set of all graphs on maximum k nodes (k is
around tens)

» Output a probabilistic fully-connected graph G = (4, E, F) on k nodes at
once

* Model the existence of nodes and edges as Bernoulli variables
* Model the node and edge attributes as Multinomial variables

« A € [0,1]%** contains both node probabilities A4, and edge probabilities A, for
nodes a #b

o E € [0,1]%***4e indicates the probabilities for edge attributes
[ €[0,1]%*4n indicates the probabilities for node attributes

» Inference: taking edge- and node-wise argmax in 4, E, and F.
* Graph Matching must be used for calculating the reconstruction loss



Limitations

* The max size of the graphs/molecules must be predefined.
* Graph matching 1s required



JTVAE (Jin et al. 2018)

* Leverage chemical domain knowledge

* Each molecule can be represented a tree-structured scaffold over chemical
SubStruCtureS (e'g') rings) bOndS) Molecule Tree decomposition

QOO >0y e @f ‘1'

: Graph G #e”énf?”
* Generate a tree-structured object &z
* Represent the scaffold of subgraph components \Q)

. Encode (Sec 2.2) Encode Se023)

* Assemble the substructure into a coherent 27w
l ] Decode l (Sec 2.4)

molecular graph L |

Q ; (Sec 2.5) o

Cl

Figure from Jin et al. 2018



MolGAN (Cao and Kipft 2018)

* An implicit, likelihood-free generative model for molecule generation

* Combined with reinforcement learning to encourage the generated
molecules with desired chemical properties

* Generator: generating molecules from a prior distribution
* Discriminator: distinguishing the generated samples and real samples

e Reward network:

* Learns to assign a reward to each molecule to match a score provided by an
external software

* Invalid molecules always receive zero rewards.



Generator

Adjacency tensor A Sampled A Graph

nnotation matrix 3
Nl’ m |
P~

T

A probabilistic fully-connected graph
e X € RN*T: atom types
e A € RNVXNXY: pond types

* Objective function:

L(6) = ALwgan + (1 — A)Lpg,

| GCN |

[ aen |




Dlscrlmlnator and Reward Network

* Learning molecule/grap]
ithms (Schlichtkrulle et al. 2017)

message passing algorit]

mpled A Graph

Discrim
gp @j GCN % | 0/1

Molecule

; Reward network
O
| GeN 0/1
| NH o

h representations with a variant of neural

e Same architectures for d
* No parameter sharing

1scriminator and reward network

* Reward network for approximating the score by an external software
* Trained with real samples and generated samples



Advantages and Limitations

* No graph matching 1s required
* The max size of the graphs/molecules must be predefined.



GCPN: Graph Convolutional Policy
Network ( You et al. 2018)

* Molecule generation as sequential decisions

* Add nodes and edges
* A Markov decision process

* Goal: discover molecules that optimize desired properties while
incorporating chemical rules.

* GCPN: A general model for goal-directed graph generation with RL
* Optimize adversarial loss and domain-specific rewards with policy gradients
* Acts 1n an environment that incorporates domain-specific rules.



Graph Generation as MDP

‘M=(SAPRY)

 States § = {s;}: consists of all possible intermediate and final graphs
 Actions A = {a;}: modification made to the current graph at each step
* State Transitional dynamics P:
* Reward function R
* Discount factor y
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State Space

()

NodeID

N delD Env 0.1 | Step reward
EdgeType update 0 | Final reward
(1) NodelD 10 |Stop
© Node
—— Edge
n [4|NodelD
= ,’;Aazsssisge Sample . NodelD Env re:n%er 0.1 | Step reward
- Nod EdgeType update 1 | Final reward
oae
embedding 1 Stop
" " (d) Dynamics
(a) State — G,  Scaffold — C (b) GCPN — my(a;|G,u €) (c)Action—a;~mg  p(Geyq|Ge ar) (e) State — Gy 1 (f) Reward — 1

* s; as the intermediate generated graph G;

* (y contains a single node that represents a carbon atom



Action Space
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* A set of atoms C =U;_, C; to be added during each step

e Actions:

* Connecting a new atom C; to a node 1n G;
* Connecting exiting nodes within G
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State Transition Dynamics
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* Incorporate domain-specific rules in the state transition dynamics.
Only carry out actions that obey the given rules

* Infeasible actions by the policy network are rejected and state remains
unchanged



Reward Design
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* Final rewards: a sum over domain-specific rewards (e.g., final

property scores, penalization of unrealistic molecules and adversarial
rewards

* Intermediate rewards: step-wise validity rewards and adversarial
rewards



Graph Convolutional Policy Network

* Compute node embeddings with neural message passing algorithms

 Action prediction
» Selection of two nodes
* Prediction of edge types
e Prediction of termination

at = CONCAT(afﬁrsta Osecond s Aedge astop)

farst(5¢) = SOFTMAX (m (X)), afirst ~ farst(s¢) € {0,1}"
fsecond (5t) = SOFTMAX (ms( Xy, X)), Gsecond ~ fsecond(st) € {0,117
Jfedge(st) = SOFTMAX (Me(Xagrerr Xagecona))s  Gedge ~ foage(se) € {0,1}°
Jstop(st) = SOFTMAX(m(AGG(X))), Gstop ~ fstop(5¢) € {0,1}



Data Sets

* ZINC, 250K drug-like organic molecules of up to 38 heavy atoms
with 9 distinct atomic numbers and 4 bond types.



Results on Reconstruction and Validity

* Reconstruct the input molecules and decoding valid molecules from
the prior distribution

Method Reconstruction Validity
CVAE 44.6% 0.7%
GVAE 53.7% 7.2%
SD-VAE? 76.2% 43.5%
GraphVAE - 13.5%
JT-VAE 76.7 % 100.0%

Table from Jin et al. 2018



Results on Property Optimization

* Property Optimization: generate novel molecules whose specified
molecular properties are optimized.

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Penalized logP QED

Method

Ist 2nd 3rd Validity Ist 2nd 3rd  Validity
ZINC 452 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%
Hill Climbing  — — — — 0.838 0.814 0.814 100.0%
ORGAN 3.63 3.49 3.44  0.4% 0.896 0.824 0.820 2.2%
JT-VAE 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 798 785 7.80 100.0% 0948 0947 0946 100.0%

Table from You et al. 2018



Results on Property Targeting

* Property Targeting: generate novel molecules whose specified
molecular properties are as close to the target scores as possible.

—2.5 <logP < -2 5 <logP <5.5 150 < MW <200 500 <MW < 550

Method

Success Diversity Success Diversity Success Diversity  Success  Diversity
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 —
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 — 0.2% 0.909 15.1% 0.759 0.1% 0.907

GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920

Table from You et al. 2018



Results on Constrained Property
Optimization

* Constrained Property Optimization: generate novel molecules
whose specified molecular properties are optimized, while also
containing a specified molecular substructure.

Table 3: Comparison of the performance in the constrained optimization task.

JT-VAE GCPN

Improvement Similarity Success Improvement Similarity Success

00 191+204 028+0.15 97.5% 4.20+1.28 0.32+0.12 100.0%
02 168+1.85 033+0.13 97.1% 4.12+1.19 0.34+0.11 100.0%
04 084+145 0.514+0.10 83.6% 249+1.30 0.47+0.08 100.0%
0.6 0.21+£0.71 0.69+0.06 464% 0.79+0.63 0.68+0.08 100.0%

Table from You et al. 2018



Generated Molecules

m)%% o RN

7.98 7.48 0.948 0.945 -8.32 -0.71
NNV R} _))_@ - Y=
oK - = O’QC(\@ _Qéﬂ’o
7.12 23.88* 0.944 0.941 -5.55 -1.78
(a) Penalized logP optimization (b) QED optimization (c) Constrained optimization of penalized logP

Figure 2: Samples of generated molecules in property optimization and constrained property opti-
mization task. In (c), the two columns correspond to molecules before and after modification.

Table from You et al. 2018



Summary

* Graph generation 1s an important problem in many areas
* Generating social networks
* Drug discovery
* Designing electric circuits

* Deep generative models for graph
* GraphVAE, JTVAE
* MolGAN
* GCPN
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Future Directions

* Application to more domains and applications
* Graphs are ubiquitous

* Graph neural networks for reasoning
* Computer vision
* Natural language understanding

* Graph neural networks + reinforcement learning
* Relational deep reinforcement learning (Zambaldi et al. 2018)

* Better theoretical understanding of graph neural networks
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Contact: jian.tang@hec.ca



