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* Node Representation Methods
* LINE, DeepWalk, node2vec

* Graph and High-dimensional Data Visualization
* LargeVis

* Knowledge Graph Embedding
* RotatE (Sun et al., ICLR’19)

* A High-performance Node Representation System (Zhu et al.,
WWW’19)



Problem Definition: Node Embedding

* Given a network/graph G=(V, E, W), where V 1is the set of nodes, E 1s
the set of edges between the nodes, and W 1s the set of weights of the
edges, the goal of node embedding 1s to represent each node i with a
vector i, R’ , which preserves the structure of networks.
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Related Work

* Classical graph embedding algorithms
 MDS, IsoMap, LLE, Laplacian Eigenmap, ...
* Hard to scale up

* Graph factorization (Ahmed et al. 2013)

* Not specifically designed for network representation
* Undirected graphs only

* Neural word embeddings (Bengio et al. 2003)
* Neural language model
» word2vec (skipgram), paragraph vectors, etc.



LINE: Large-scale Information Network
Embedding (Tang et al., Most Cited Paper of
WWW 2015)

* Arbitrary types of networks
* Directed, undirected, and/or weighted

* Clear objective function
* Preserve the first-order and second-order proximity

e Scalable

* Asynchronous stochastic gradient descent
» Millions of nodes and billions of edges: a coupe of hours on a single machine

Jian Tang, Meng Qu, Mingzhe Wang, Jun Yan, Ming Zhang and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15



First-order Proximity

. o

« The local pairwise proximity between the nodes

« However, many links between the nodes are not observed
« Not sufficient for preserving the entire network structure



Second-order Proximity

“The degree of overlap of two people’s friendship networks correlates
with the strength of ties between them” --Mark Granovetter

. o

“You shall know a word by the company it keeps” --John Rupert Firth

« Proximity between the neighborhood structures of the nodes



Preserving the First-order Proximity

(LINE 1st)

* Distributions: : (defined on the undirected edge 1 - j)
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* Objective:

O, = KL(p,p) ==Y, w;logp,(v,,v,)
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Preserving the Second-order Proximity
(LINE 2nd)

* Distributions: (defined on the directed edge 1 -> )

Empmcal distribution of D, (Vj lv.) =
neighborhood structure: E W,
kEV

Model distribution of | exp( )
neighborhood structure: P> (V V; )
E exp(i', i)

kev

* Objective:

0, = EKL(pz( V), p,C1v)) ==Y w;logp,(v; 1v,)

(i,J))EE



Optimization Tricks

- Stochastic gradient descent + Negative Sampling
- Randomly sample an edge and multiple negative edges
* The gradient w.r.t the embedding with edge (1, j)
390, _ . dlogp,(v; 1v,)
ou, ! ou,
Problematic when the variances of weights of the edges are large
- The variance of the gradients are large
Solution: edge sampling
- Sample the edges according to their weights and treat the edges as binary
Complexity: O(d*K*|E|)

. Lidnear to the dimensionality d, the number of negative samples K, and the number of
edges




Discussion

* Embed nodes with few neighbors

* Expand the neighbors by adding higher-order neighbors
* Breadth-first search (BFYS)
* Adding only second-order neighbors works well in most cases

* Embed new nodes
* Fix the embeddings of existing nodes
* Optimize the objective w.r.t. the embeddings of new nodes



DeepWalk (Perozzi et al. 2014)

* Learning node representations with the technique for learning word
representations, i.e., Skipgram

* Treat random walks on networks as sentences
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Random walk generation
(generate node contexts
through random search)

Predict the nearby nodes
in the random walks

Bryan Perozzi, Rami Al-Rfou, Steven Skiena. DeepWalk: Online Learning of Social Representations. KDD’14



Node2Vec (Grover and Leskovec, 2016)

Figure 1: BFS and DFS search strategies from node u (k = 3).

* Find the node context with a hybrid strategy of
* Breadth-first Sampling (BFS): homophily
e Depth-first Sampling (DFS): structural equivalence

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. KDD’16



Expand Node Contexts with Biased
Random Walk

* Biased random walk with two parameters p and g
e p: controls the probability of revisiting a node in the walk
* Q: controls the probability of exploring “outward” nodes
* Find optimal p and q through cross-validation on labeled data

e Optimized through similar objective as LINE with first-order proximity



Comparison between LINE, DeepWalk,
and Node2Vec

Algorithm Neighbor Expansion Proximity Optimization Validation Data
LINE BFS 15t or 2" Negative Sampling No
DeepWalk Random 2nd Hierarchical Softmax No

Node2Vec BFS + DFS 1st Negative Sampling Yes




Applications

* Node classification (Perozzi et al. 2014, Tang et al. 2015a, Grover et al.
2015)

* Node visualization (Tang et al. 2015a)

* Link prediction (Grover et al. 2015)

 Recommendation (Zhao et al. 2016)

* Text representation (Tang et al. 20153, Tang et al. 2015b)



Many Extensions ...

* Leverage global structural information (Cao et al. 2015)

* Non-linear methods based on autoencoders (Wang et al. 2016)
* Matrix-factorization based approaches (Qiu et al. 2018)

* Directed network embedding (Ou et al. 2016)

* Signed network embedding (Wang et al. 2017)

* Multi-view networks ( Qu and Tang et al. 2017)

* Networks with node attributes (Yang et al. 2015)

* Heterogeneous networks (Chang et al. 2015)

* Task-specific network embedding (Chen et al. 2017)
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Extremely Low-dimensional Representations:
2D/3D for Visualizing Networks

K-Nearest Neighbor Graph (KNN-G) Graph Layout
Construction

High-dimensional Data Networks

Heatmaps



t-SNE (Maarten and Hinton, 2008, 2014 )

* State-of-the-art algorithm for high- : —
dimensional data visualization s -z
* Deployed by Tensorflow . T T )

e [_imitations

* K-NNG construction: complexity - o e & Ul
grows O(NlogN) to the number of data — " et
points N -k i

* Graph layout: complexity i1s O(NlogIN)
* Very sensitive parameters

TensorBoard Visualizations by t-SNE



LargeVis (Tang et al., Best Paper Nomination
at WWW 2016)

* Efficient approximation of K-NNG construction
* 30 times faster than t-SNE (3 million data points)
* Better time-accuracy tradeoff

e Efficient probabilistic model for graph layout
* O(NlogN) -> O(N)
e 7 times faster than t-SNE (3 million data points)
* Better visualization layouts
 Stable parameters across different data sets

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16



Learning the Layout of KNN Graph

* Preserve the similarities of the nodes in 2D/3D space
* Represent each node with a 2D/3D vector
» Keep similar data close while dissimilar data far apart

* Probability of observing a binary edge between nodes (i,j):

) 1
14115, -5, IP

p(eij =1)
* Likelihood of observing a weighted edge between nodes (i,j):

p(eij = W,‘j) = p(eij = 1)Wij



A Probabilistic Model for Graph Layout

* Objective:

O = H pe; =wy) H (1-ple; =w;))

(i,J))EE (i,j)EE

v: an unified weight assigned to negative edge

* Randomly sample some negative edges
* Optimized through asynchronous stochastic gradient descent
* Time complexity: linear to the number of data points
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10M Scientific Papers on One Slide
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o Computer Science
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Physics
Economics

Biology

Chemistry

Medicine
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Computer Science vs. Mathematics

System Analysis

Statistical Modeling -\ oME

Pattern Recognition

Signal Processing
'."@/-" /
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Computer Science vs. Physics

System Analysis

Control Systems

System Reliability

Optical Systems

Computer Science I
Physics

29



~ Wikipedia Articles

~ (color: semantic cluster)

30



ivedournal Network
color: community

4 N

31



[

- Computer Science
- Authors ’
~ (color: community)

%

32



Outline

* Node Representation Methods
* LINE, DeepWalk, node2vec

* Graph and High-dimensional Data Visualization
* LargeVis

* Knowledge Graph Embedding
* RotatE

* A High-performance Node Representation System



Knowledge Graphs L oPEEEE s

* Knowledge graphs are heterogeneous graphs
* Multiple types of relations

* A set of facts represented as triplets
* (head entity, relation, tail entity)

* A variety of applications

ki .
* Question answering GO& )816 mn Microsoft

e Search Knowledge Graph . SATORI

NELL: Never-Ending Language Learning
 Recommender Systems
. L 2
* Natural language understanding = - OpenlE

Freebase w.i’a" ya GO (Reverb, OLLIE)
= Mt e :




Related Work on Knowledge Graph
Embedding

* Representing entities as embeddings

* Representing relations as embeddings or matrices

Model Score Function
SE (Bordes et al., 2011) — [W,.1h — W,.ot|| h,t € R*, W, . ¢ R¥*"

TransE (Bordes et al., 2013) —||h+r —t| h,r,t € R
TransX —|lgr,1(h) +1r — gr2(t)]| h,r,t € R”
DistMult (Yang et al., 2014) (r,h,t) h,r,t € R
ComplEx (Trouillon et al., 2016) Re({r,h,t)) h,r,t € C"
HolE (Nickel et al., 2016) (r,h®t) h,r,t € R
ConvE (Dettmers et al., 2017) (o(vec(o([r,h] x Q))W), t) h,r,t € R

RotatE —|lhor—t|' h,r,t € C* |r;| =1




Task: Knowledge Graph Completion

* A fundamental task: predicting missing links

* The Key Idea: model and infer the relation patterns in knowledge
graphs according to observed knowledge facts.

* The relationship between relations

* Example:

Barack Obama Bornln United_States

Dt

Barack_Obama Nationality American

Parents of Parents are Grandparents



Relation Patterns

* Symmetric/Antisymmetric Relations
* Symmetric: e.g., Marriage
* Antisymmetric: e.g., Filiation

* Formally:

ris Symmetric: r(x,y) =>r(y,x)ifvVx,y

ris Antisymmetric:  7(x,y) = —r(y,x) ifVx,y



Relation Patterns

* Inverse Relations
* Hypernym and hyponym
 Husband and wife

* Formally:

ry is inverse to relation r,: 1, (x,y) = r(y,x) if V x,y



Relation Patterns

* Composition Relations
* My mother’s husband is my father

* Formally:

1 is a composition of relation 7, ,
rx,y)Ar3(y,z) = r(x,z)itVxy,z
and relation 73: 2(%,y) A13(y, 2) 1(x,2) y



Abilities in Inferring the Relation Patterns

* None of existing methods are able to model and infer all the three

types of relation patterns

Model Score Function Symmetry | Antisymmetry | Inversion | Composition
SE — ||W'r’,1h— Wr,2t|| X X X X
TransE —[[h+r —t X v v v
TransX | — ||gr1(h) +1r — g, 2(t)]| v v X X
DistMult (h,r,t) v X X X
ComplEx Re((h,r,t)) v v v X
RotatE —|lhor —1t v v v v




RotatE (Sun et al. 2019)

* A new knowledge graph embedding model RotatE

* Each relation as a elementwise rotation from the source entity to the target
entity in the complex vector space

* RotatE 1s able to model and infer all the three types of relation patterns

* An efficient and effective negative sampling algorithm for optimizing
RotatE

* State-of-the-art results on all the benchmarks for link prediction on
knowledge graphs

Zhiqging Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph Embedding by Relational
Rotation in Complex Space.” to appear in ICLR"19.



Relation as Elementwise Rotation in
Complex Space

. Rle(:presenting head and tail entities in complex vector space, 1.€., h,t €
C

* Define each relation r as an element-wise rotation from the head entity
h to the tail entity t, 1.¢.,

t=h°r, where|r;|=1

* ° 1s the element-wise product. More specifically, we have t; = h;r;,
and .
Iy = ele"‘»i ,

* where 0, ; 1s the phase angle of r 1n the i1-th dimension.



Geometric Interpretation

e Define the distance function of RotatE as

dr(h,t) = [|h°r — t]]

|h+r-t|

h h+r {

(a) TransE models r as (h)_ RD_““E models r as ro-
translation in real line. tation 1n C(}I“plﬂx plune.



Modeling the Relation Patterns with
RotatE

* Arelation r 1s symmetric if and only if r; = +1, 1.¢€.,

0,i=0o0rm

* An example on the space of C




Modeling the Relation Patterns with
RotatE

* A relation r 1s antisymmetric if and only if r°r # 1

* Two relations r; and 7, are inverse 1f and only if r, = 17, 1.¢€.,
0, = —01,

* Arelationrg = e'93 is a composition of two relations r; = ‘%1 and
ro = 6“92 1f OIlly ifrg —Tq070>y, i.e.,

93=01+92



Optimization
* Negative sampling loss

k
1
L =—log a(]/ —d,(h, t)) - 2 Elogﬁ(dr(hg, ti) =)
=1

* y is a fixed margin, ¢ is the sigmoid function, and (h;, r, t;) is the i-th
negative triplet.



Self-adversarial Negative Sampling

* Traditionally, the negative samples are drawn 1n an uniform way
* Inefficient as training goes on since many samples are obviously false
* Does not provide useful information

* A self-adversarial negative sampling
* Sample negative triplets according to the current embedding model
* Starts from easier samples to more and more difficult samples
* Curriculum Learning
, , exp afr(h t’
p(hj7rat]|{(h17TZ7tz)}) — ( / ])

2_; exp oo (hy, )

* a is the temperature of sampling. f-(h/, t;) measures the salience of
the triplet




The Final Objective

* Instead of sampling, treating the sampling probabilities as weights.

L =—logo(y—d.(h,t)) Zp (hy,r t;)logo(d,-(h, t;) —~)



Experiments: Data Sets

* FB15K: a subset of Freebase. The main relation types are
symmetry/antisymmetry and inversion patterns.

* WNI18: a subset of WordNet. The main relation types are
symmetry/antisymmetry and inversion patterns.

« FB15K-237: a subset of FB15K, where inversion relations are deleted. The main
relation types are symmetry/antisymmetry and composition patterns.

« WNI18RR: a subset of WN18, where inversion relations are deleted. The main
relation types are symmetry/antisymmetry and composition patterns.

Dataset #entity | #relation | #training | #validation | #test
FB 15k 14,951 1,345 483,142 50,000 59,071
WNIS 40,943 |8 141,442 5.000 5.000

FB15k-237 | 14,541 237 272,115 17,535 20.466
WNI8RR 40,943 |1 86,835 3.034 3.134




Results on FB15k and WN18

* RotatE performs the best

pRotatE performs similarly to RotatE

FB15k WNI18

MR MRR H@] H@3 H@l]0 | MR MRR H@l H@3 H@IO
TransE [¥] - 463 297 578 749 - 495 113 .888 943
DistMult [¢] | 42 198 - - 893 655 797 - - 946
HolE - 524 402 613 139 - 938 930 945 949
ComplEx - .692 599 159 .840 - 941 936 945 947
ConvE 51 657 558 123 831 374 943 935 946 956
pRotatE 43 799 750 .829 .884 254 947 942 950 957
RotatE 40 197 746 .830 .884 309 .949 944 952 959




Results on FB15k-237 and WN18RR

* RotatE performs the best

* RotatE performs significantly better than pRotatE
* A lot of composition patterns on the two data sets
* Modulus information are important for modeling the composition patterns

FB15k-237 WNI18RR
MR MRR H@l H@3 H@lI0 | MR MRR H@]l H@3 H@IO
TransE [¥] | 357 .294 - - 465 3384  .226 - - 501
DistMult 254 241 155 263 419 5110 43 .39 44 49

ComplEx | 339 247 A58 275 428 5261 44 41 46 Sl
ConvE 244 325 237 356 S01 4187 43 40 44 52

pRotatE 178 328 230 365 524 2923 462 A17 479 552
RotatE 177 338 241  .375 S33 3340 476 428 492 S71




Results on Countries (Bouchard et al.
2015)

* A carefully designed dataset to explicitly test the capabilities for
modeling the composition patterns

e Three subtasks S1, S2, S3
* From easy to difficult

Countries (AUC-PR)
DistMult ComplEx ConvE RotatE
S1 | 1.00+0.00 | 0.97£0.02 | 1.00+0.00 | 1.00 £0.00
S2 | 0.72+£0.12 | 0.57+0.10 | 0.9940.01 | 1.00+0.00
S3 | 0.524+0.07 | 0.43£0.07 | 0.86x0.05 | 0.95+0.00




Summary

* Modeling relation patterns 1s critical for knowledge base completion
* Symmetric/Antisymmetric, Inverse, and composition

* RotatE: define each relation as a elementwise rotation from the head
entity to the tail entity 1n the complex vector space
* Capable of modeling and inferring all the three types of relation patterns

* A self-negative sampling techniques for training knowledge graph
embeddings

* State-of-the-art results on all existing benchmark data sets



Software

LINE:
(C++)

LargeVis :
(C++&Python)

RotatE :
(Pytorch)

https://github.com/tangjianpku/LINE
(593 stars, released since 2015.3)

https://github.com/Iferry007/LargeVis
(459 stars, released since 2016.7)

https://github.com/DeepGraphlLearning/

KnowledgeGraphEmbedding

(just released!!)


https://github.com/tangjianpku/LINE
https://github.com/lferry007/LargeVis
https://github.com/lferry007/LargeVis
https://github.com/lferry007/LargeVis

Outline

* Node Representation Methods
* LINE, DeepWalk, node2vec

* Graph and High-dimensional Data Visualization
* LargeVis

* Knowledge Graph Embedding
* RotatE

* A High-performance Node Representation System



A High-Pertformance CPU-GPU Hybrid System
for Node Embedding (Zhu et al. 2019)

* A specific system designed for node embeddings through algorithm
and system co-design

* CPUs: online random walk generation
* GPUs: training node embeddings
* Efficient and effective collaboration strategies between CPUs and GPUs

* 50 times faster than existing systems

* Take only one minute for a network with one million node

Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian Tang. “A High-Performance CPU-GPU Hybrid
System for Node Embedding ”. To appear in WWW’19.
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Contact: jian.tang@hec.ca



