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Quebec Institute for
Learning Algorithms (Mila)

FACULTY

= |ead by the Deep Learning pioneer:
Yoshua Bengio

= The largest academic lab on deep
learning and reinforcement learning

= >30 professors (14 core member), ~
3 X % 3 OO  soosugens

A = Multiple Postdoc, Ph.D., Master, and
Interns positions are available.




Why graphs”?
Graphs are a general
language for describing
and modeling complex
systems
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Graph!



Many Data are Graphs

Economic networks

Information networks:

Web & citations Internet Networks of neurons
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Why Graphs” Why Now?

= Universal language for describing complex
data

= Networks/graphs from science, nature, and
technology are more similar than one would expect

= Shared vocabulary between fields

= Computer Science, Social science, Physics,
Economics, Statistics, Biology

= Data availability (+computational challenges)
= \Web/mobile, bio, health, and medical

= |mpact!
= Social networking, Social media, Drug design
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Machine Learning with Graphs

Classical ML tasks in graphs:
= Node classification
= Predict a type of a given node
= Link prediction
= Predict whether two nodes are linked
= Community detection
= |dentify densely linked clusters of nodes

= Network similarity
= How similar are two (sub)networks
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—xample: Node Classification
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—xample: Node Classification
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel
protein—protein interactions. Nature.
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https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

—xample: Link Prediction
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—xample: Link Prediction
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Machine Learning Lifecycle

= (Supervised) Machine Learning
Lifecycle: This feature, that feature.
Every single time!

Raw Structured Learning Model
Data Data Algorithm
>

<
t Automatically Downstream
Engfiodng learn the features prediction task
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Feature Learning in Graphs

Goal: Efficient task-independent
feature learning for machine learning

in graphs!
node o vec
— >F----!
fru— ~
]Rd
O Feature representation,

embedding
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—Xample

= Zachary’s Karate Club Network:
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Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social
Representations. KDD.
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https://arxiv.org/pdf/1403.6652.pdf

Why Is It Hard?

= Modern deep learning toolbox is
designed for simple sequences or grids.

= CNNs for fixed-size |mages/gr|ds

o
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Why Is It Hard?

= But graphs are far more complex!

= Complex topographical structure
(i.e., no spatial locality like grids)

= No fixed node ordering or reference point
(i.e., the isomorphism problem)
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This talk

= 1) Node embeddings

= Map nodes to low-dimensional
embeddings.

= ?2) Graph neural networks

= Deep learning architectures for graph-
structured data

= 3) Generative graph models
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